Update on the use of nonhuman primate models for preclinical testing of gene therapy approaches targeting hematopoietic cells

被引:67
作者
Donahue, RE [1 ]
Dunbar, CE [1 ]
机构
[1] NHLBI, Hematol Branch, Bethesda, MD 20892 USA
关键词
D O I
10.1089/104303401300057289
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Transfer of genes into hematopoietic stem cells or primary lymphocytes has been a primary focus of the gene therapy field for more than a decade because of the wide variety of congenital and acquired diseases that potentially could be cured by successful gene transfer into these cell populations. However, despite success in murine models and in vitro, progress has been slow, and early clinical trials were disappointing due to inefficient gene transfer into long-term repopulating cells. The unique predictive value of nonhuman primate or other large animal models has become more apparent, and major advances in gene transfer efficiency have been made by utilizing these powerful but expensive and complex systems. This review summarizes more recent findings from nonhuman primate investigations focusing on hematopoietic stem cells or lymphocytes as target populations, and highlights specific preclinical issues, including safety. Results from studies using standard retroviral vectors, lentiviral vectors, adenoviral vectors, and adeno-associated viral vectors are discussed. Judicious application of these models should continue to be a priority, and advances should now be tested in proof-of-concept clinical trials.
引用
收藏
页码:607 / 617
页数:11
相关论文
共 103 条
[1]   BEHAVIOR OF HEMATOPOIETIC STEM-CELLS IN A LARGE ANIMAL [J].
ABKOWITZ, JL ;
PERSIK, MT ;
SHELTON, GH ;
OTT, RL ;
KIKLEVICH, JV ;
CATLIN, SN ;
GUTTORP, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (06) :2031-2035
[2]   Evidence that hematopoiesis may be a stochastic process in vivo [J].
Abkowitz, JL ;
Catlin, SN ;
Guttorp, P .
NATURE MEDICINE, 1996, 2 (02) :190-197
[3]   High-efficiency gene transfer into CD34(+) cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G [J].
Akkina, RK ;
Walton, RM ;
Chen, ML ;
Li, QX ;
Planelles, V ;
Chen, ISY .
JOURNAL OF VIROLOGY, 1996, 70 (04) :2581-2585
[4]   In vivo selection of retrovirally transduced hematopoietic stem cells [J].
Allay, JA ;
Persons, DA ;
Galipeau, J ;
Riberdy, JM ;
Ashmun, RA ;
Blakley, RL ;
Sorrentino, BP .
NATURE MEDICINE, 1998, 4 (10) :1136-1143
[5]   Marking and gene expression by a lentivirus vector in transplanted human and nonhuman primate CD34+ cells [J].
An, DS ;
Wersto, RP ;
Agricola, BA ;
Metzger, ME ;
Lu, S ;
Amado, RG ;
Chen, ISY ;
Donahue, RE .
JOURNAL OF VIROLOGY, 2000, 74 (03) :1286-1295
[6]  
AN DS, 2001, IN PRESS J VIROL
[7]   RAPID ENGRAFTMENT BY PERIPHERAL-BLOOD PROGENITOR CELLS MOBILIZED BY RECOMBINANT HUMAN STEM-CELL FACTOR AND RECOMBINANT HUMAN GRANULOCYTE-COLONY-STIMULATING FACTOR IN NONHUMAN-PRIMATES [J].
ANDREWS, RG ;
BRIDDELL, RA ;
KNITTER, GH ;
ROWLEY, SD ;
APPELBAUM, FR ;
MCNIECE, IK .
BLOOD, 1995, 85 (01) :15-20
[8]   Differential engraftment of genetically modified CD34+ and CD34- hematopoietic cell subsets in lethally irradiated baboons [J].
Andrews, RG ;
Peterson, LJ ;
Morris, J ;
Potter, J ;
Heyward, S ;
Gough, M ;
Bryant, E ;
Kiem, HP .
EXPERIMENTAL HEMATOLOGY, 2000, 28 (05) :508-518
[9]  
ANDREWS RG, 1994, BLOOD, V84, P800
[10]   GENE-THERAPY - INTRACELLULAR IMMUNIZATION [J].
BALTIMORE, D .
NATURE, 1988, 335 (6189) :395-396