Mitochondrial SIRT3 and heart disease

被引:126
作者
Pillai, Vinodkumar B. [1 ]
Sundaresan, Nagalingam R. [1 ]
Jeevanandam, Valluvan [1 ]
Gupta, Mahesh P. [1 ]
机构
[1] Univ Chicago, Dept Surg, Comm Cellular & Mol Physiol, Chicago, IL 60637 USA
关键词
Sirtuins; SIRT3; Cardiac hypertrophy; Mitochondrial metabolism; Apoptosis; TRANSCRIPTIONAL COACTIVATOR PGC-1-ALPHA; INHIBITS CARDIAC-HYPERTROPHY; DEPENDENT GENE-EXPRESSION; ACTIVATED PROTEIN-KINASE; FATTY-ACID OXIDATION; ENERGY-METABOLISM; CALORIE RESTRICTION; GLUCOSE-HOMEOSTASIS; HISTONE DEACETYLASE; LYSINE ACETYLATION;
D O I
10.1093/cvr/cvq250
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Sirtuins are emerging as key regulators of many cellular functions including metabolism, cell growth, apoptosis, and genetic control of ageing. In mammals there are seven sirtuin analogues, SIRT1 to SIRT7. Among them SIRT3 is unique because this is the only analogue whose increased expression has been found to be associated with extended lifespan of humans. SIRT3 levels have been shown to be elevated by exercise and calorie restriction. Although the role of SIRT3 in cell biology is only beginning to be understood, initial studies have shown that SIRT3 plays a major role in free fatty acid oxidation and maintenance of cellular ATP levels. In the heart SIRT3 has been found to block development of cardiac hypertrophy and protect cardiomyocytes from oxidative stress-mediated cell death. Similarly, SIRT3 has been reported to have tumour-suppressive characteristics. In this article, we review the known effects of SIRT3 in different tissues and relate them to the protection of cardiomyocytes under stress.
引用
收藏
页码:250 / 256
页数:7
相关论文
共 76 条
[1]   A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis [J].
Ahn, Bong-Hyun ;
Kim, Hyun-Seok ;
Song, Shiwei ;
Lee, In Hye ;
Liu, Jie ;
Vassilopoulos, Athanassios ;
Deng, Chu-Xia ;
Finkel, Toren .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (38) :14447-14452
[2]   Sirt1 regulates aging and resistance to oxidative stress in the heart [J].
Alcendor, Ralph R. ;
Gao, Shumin ;
Zhai, Peiyong ;
Zablocki, Daniela ;
Holle, Eric ;
Yu, Xianzhong ;
Tian, Bin ;
Wagner, Thomas ;
Vatner, Stephen F. ;
Sadoshima, Junichi .
CIRCULATION RESEARCH, 2007, 100 (10) :1512-1521
[3]   SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways [J].
Allison, Simon J. ;
Milner, Jo .
CELL CYCLE, 2007, 6 (21) :2669-2677
[4]   Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle [J].
Arany, Z ;
He, HM ;
Lin, JD ;
Hoyer, K ;
Handschin, C ;
Toka, O ;
Ahmad, F ;
Matsui, T ;
Chin, S ;
Wu, PH ;
Rybkin, II ;
Shelton, JM ;
Manieri, M ;
Cinti, S ;
Schoen, FJ ;
Bassel-Duby, R ;
Rosenzweig, A ;
Ingwall, JS ;
Spiegelman, BM .
CELL METABOLISM, 2005, 1 (04) :259-271
[5]   Characterization of the Murine SIRT3 Mitochondrial Localization Sequence and Comparison of Mitochondrial Enrichment and Deacetylase Activity of Long and Short SIRT3 Isoforms [J].
Bao, Jianjun ;
Lu, Zhongping ;
Joseph, Joshua J. ;
Carabenciov, Darin ;
Dimond, Christopher C. ;
Pang, Liyan ;
Samsel, Leigh ;
Mccoy, J. Philip, Jr. ;
Leclerc, Jaime ;
Nguyen, PhuongMai ;
Gius, David ;
Sack, Michael N. .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2010, 110 (01) :238-247
[6]   Deactivation of peroxisome proliferator-activated receptor-α during cardiac hypertrophic growth [J].
Barger, PM ;
Brandt, JM ;
Leone, TC ;
Weinheimer, CJ ;
Kelly, DP .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (12) :1723-1730
[7]   A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages [J].
Bellizzi, D ;
Rose, G ;
Cavalcante, P ;
Covello, G ;
Dato, S ;
De Rango, F ;
Greco, V ;
Maggiolini, M ;
Feraco, E ;
Mari, V ;
Franceschi, C ;
Passarino, G ;
De Benedictis, G .
GENOMICS, 2005, 85 (02) :258-263
[8]   Calorie restriction, SIRT1 and metabolism: Understanding longevity [J].
Bordone, L ;
Guarente, L .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2005, 6 (04) :298-305
[9]   PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure [J].
Canto, Carles ;
Auwerx, Johan .
CURRENT OPINION IN LIPIDOLOGY, 2009, 20 (02) :98-105
[10]   Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt [J].
Chan, Anita Y. M. ;
Dolinsky, Vernon W. ;
Soltys, Carrie-Lynn M. ;
Viollet, Benoit ;
Baksh, Shairaz ;
Light, Peter E. ;
Dyck, Jason R. B. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (35) :24194-24201