EBP50 ((e) under bar zrin-radixin-moesin-(b) under bar inding (p) under bar hosphoprotein <(50)under bar>) was recently identified by affinity chromatography on the immobilized NH2-terminal domain of ezrin. Here we map and characterize the regions in EBP50 and ezrin necessary for this association. Using blot overlays and in solution binding assays, the COOH-terminal 30 residues of EBP50 were found to be sufficient for an association with residues 1-286 of ezrin. EBP50 did not bind to full-length (1-585) ezrin, indicating that the EBP50 binding site is masked in the full-length molecule. Ezrin contains two complementary self-association domains known as N- and C-ERMADs ((e) under bar zrin-(r) under bar adixin-(m) under bar oesin-(a) under bar ssociation (d) under bar omains), encompassing residues 1-296 and 479-585, respectively. An ezrin 1-583 construct lacking the two terminal residues necessary for this association was found to have an unmasked EBP50 binding site. Moreover, binding of EBP50 and the C-ERMAD to ezrin residues 1-296 was found to be mutually exclusive, with the C-ERMAD having a higher affinity. These results suggest that in full-length ezrin, the binding site for EBP50 is masked through an intramolecular N/C-ERMAD association, Based on these and additional results, we propose a model whereby dormant ezrin can be activated to bind EBP50 on its NH2-terminal end and F-actin on its COOH-terminal end. Since EBP50 is proposed to bind membrane proteins through its PDZ domains, this provides a molecular description of the regulated linkage of microfilaments to membranes in cell surface microvilli.