Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations

被引:266
作者
Rao, S. I. [1 ,2 ]
Dimiduk, D. M. [3 ]
Parthasarathy, T. A. [1 ,2 ]
Uchic, M. D. [3 ]
Tang, M. [3 ]
Woodward, C. [4 ]
机构
[1] USAF, Res Lab, Mat & Mfg Directorate, RxLM, Wright Patterson AFB, OH 45433 USA
[2] Universal Energy Syst Inc, Dayton, OH 45432 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[4] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
关键词
dislocation dynamics; plastic deformation; compression test; nickel; size effects;
D O I
10.1016/j.actamat.2008.03.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent experimental studies have revealed that micrometer-scale face-centered cubic (fcc) crystals show strong strengthening effects, even at high initial dislocation densities. We use large-scale three-dimensional discrete dislocation simulations (DDS) to explicitly model the deformation behavior of fcc Ni microcrystals in the size range of 0.5-20 mu m. This study shows that two size-sensitive athermal hardening processes, beyond forest hardening, are sufficient to develop the dimensional scaling of the flow stress, stochastic stress variation, flow intermittency and high initial strain-hardening rates, similar to experimental observations for various materials. One mechanism, source-truncation hardening, is especially potent in micrometer-scale volumes. A second mechanism, termed exhaustion hardening, results from a breakdown of the mean-field conditions for forest hardening in small volumes, thus biasing the statistics of ordinary dislocation processes. (c) 2008 Acta Materialia Inc. All rights reserved.
引用
收藏
页码:3245 / 3259
页数:15
相关论文
共 67 条
[1]   Enabling strain hardening simulations with dislocation dynamics [J].
Arsenlis, A. ;
Cai, W. ;
Tang, M. ;
Rhee, M. ;
Oppelstrup, T. ;
Hommes, G. ;
Pierce, T. G. ;
Bulatov, V. V. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2007, 15 (06) :553-595
[2]   Size effects in uniaxial deformation of single and polycrystals: a discrete dislocation plasticity analysis [J].
Balint, D. S. ;
Deshpande, V. S. ;
Needleman, A. ;
Van der Giessen, E. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2006, 14 (03) :409-422
[3]  
Basinski S. J., 1979, Dislocations in solids, vol.IV. Dislocations in metallurgy, P261
[4]   Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique [J].
Bei, H. ;
Shim, S. ;
George, E. P. ;
Miller, M. K. ;
Herbert, E. G. ;
Pharr, G. M. .
SCRIPTA MATERIALIA, 2007, 57 (05) :397-400
[5]   Scale dependence of mechanical properties of single crystals under uniform deformation [J].
Benzerga, AA ;
Shaver, NF .
SCRIPTA MATERIALIA, 2006, 54 (11) :1937-1941
[6]   On failure of continuum plasticity theories on small scales [J].
Berdichevsky, V ;
Dimiduk, D .
SCRIPTA MATERIALIA, 2005, 52 (10) :1017-1019
[7]   Homogenization in micro-plasticity [J].
Berdichevsky, VL .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2005, 53 (11) :2457-2469
[8]   CROSS-SLIPPING PROCESS AND THE STRESS-ORIENTATION DEPENDENCE IN PURE COPPER [J].
BONNEVILLE, J ;
ESCAIG, B .
ACTA METALLURGICA, 1979, 27 (09) :1477-1486
[9]   Dislocation multi-junctions and strain hardening [J].
Bulatov, VV ;
Hsiung, LL ;
Tang, M ;
Arsenlis, A ;
Bartelt, MC ;
Cai, W ;
Florando, JN ;
Hiratani, M ;
Rhee, M ;
Hommes, G ;
Pierce, TG ;
de la Rubia, TD .
NATURE, 2006, 440 (7088) :1174-1178
[10]  
Cai W, 2004, SOLID MECH APPL, V115, P1