Nitrogen use efficiency of crop plants: Physiological constraints upon nitrogen absorption

被引:90
作者
Glass, ADM [1 ]
机构
[1] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada
关键词
nitrogen use efficiency; nitrate influx and efflux; ammonium influx and efflux; regulation of influx; ammonium inhibition of nitrate influx; diurnal effects on nitrogen influx;
D O I
10.1080/07352680390243512
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Current global nitrogen fertilizer use has reached approximately one hundred billion kg per annum. In many agricultural systems, a very substantial portion of this applied nitrogen fertilizer is lost from soil to groundwaters, rivers and oceans. While soil physicochemical properties play a significant part in these losses, there are several characteristic features of plant nitrogen transporter function that facilitate N losses. Nitrate and ammonium efflux from roots result in a reduction of net nitrogen uptake. As external nitrate and ammonium concentrations, respectively, are increased, particularly into the range of concentrations that are typical of agricultural soils, elevated rates of nitrate and ammonium efflux result. The rapid down-regulation of high-affinity influx as plants become nitrogen replete further reduces the root's capacity to acquire external nitrogen; only nitrogen-starved roots absorb with both high capacity and high affinity. The results of studies using molecular biology methods demonstrate that genes encoding nitrate and ammonium transporters are rapidly down-regulated when nitrogen is resupplied to nitrogen-starved plants. Provision of ammonium to roots of plants actively absorbing nitrate imposes a block on nitrate uptake, the extent of which depends on the ammonium concentration, thus further reducing the efficient utilization of soil nitrate. During the daily variation of incoming light and during periods of low incident irradiation (i.e. heavy cloud cover) the expression levels of genes encoding nitrate and ammonium transporters, and rates of nitrate and ammonium uptake, are substantially reduced. Low temperatures reduce growth and nitrogen demand, and appear to discriminate against high-affinity nitrogen influx. In sum, these several factors conspire to limit rates of plant nitrogen uptake to values that are well below capacity. These characteristics of the plant's nitrogen uptake systems facilitate nitrogen losses from soils.
引用
收藏
页码:453 / 470
页数:18
相关论文
共 113 条
[1]  
Amraoui MB, 2000, CEREAL RES COMMUN, V28, P379
[2]  
[Anonymous], ACTA BOT NEERLANDICA
[3]  
[Anonymous], 1994, SOIL SOLUTION CHEM A
[4]   GROWTH AND POTASSIUM CONTENT OF PLANTS IN SOLUTION CULTURES MAINTAINED AT CONSTANT POTASSIUM CONCENTRATIONS [J].
ASHER, CJ ;
OZANNE, PG .
SOIL SCIENCE, 1967, 103 (03) :155-&
[5]   COMPARATIVE INDUCTION OF NITRATE AND NITRITE UPTAKE AND REDUCTION SYSTEMS BY AMBIENT NITRATE AND NITRITE IN INTACT ROOTS OF BARLEY (HORDEUM-VULGARE L) SEEDLINGS [J].
ASLAM, M ;
TRAVIS, RL ;
HUFFAKER, RC .
PLANT PHYSIOLOGY, 1993, 102 (03) :811-819
[6]   Evidence for substrate induction of a nitrate efflux system in barley roots [J].
Aslam, M ;
Travis, RL ;
Rains, DW .
PLANT PHYSIOLOGY, 1996, 112 (03) :1167-1175
[7]   COMPARATIVE KINETICS AND RECIPROCAL INHIBITION OF NITRATE AND NITRITE UPTAKE IN ROOTS OF UNINDUCED AND INDUCED BARLEY (HORDEUM-VULGARE L) SEEDLINGS [J].
ASLAM, M ;
TRAVIS, RL ;
HUFFAKER, RC .
PLANT PHYSIOLOGY, 1992, 99 (03) :1124-1133
[8]   Nitrate uptake, efflux, and in vivo reduction by Pima and Acala cotton cultivars [J].
Aslam, M ;
Nielson, K ;
Travis, RL ;
Rains, DW .
CROP SCIENCE, 1997, 37 (06) :1795-1801
[9]   THE EFFECT OF AMMONIUM-IONS ON MEMBRANE-POTENTIAL AND ANION FLUX IN ROOTS OF BARLEY AND TOMATO [J].
AYLING, SM .
PLANT CELL AND ENVIRONMENT, 1993, 16 (03) :297-303
[10]   INDUCTION OF A HIGH-CAPACITY NITRATE-UPTAKE MECHANISM IN BARLEY ROOTS PROMPTED BY NITRATE UPTAKE THROUGH A CONSTITUTIVE LOW-CAPACITY MECHANISM [J].
BEHL, R ;
TISCHNER, R ;
RASCHKE, K .
PLANTA, 1988, 176 (02) :235-240