Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation

被引:301
作者
Shivaswamy, Sushma [1 ,2 ]
Bhinge, Akshay [1 ,2 ]
Zhao, Yongjun [3 ]
Jones, Steven [3 ]
Hirst, Martin [3 ]
Iyer, Vishwanath R. [1 ,2 ]
机构
[1] Univ Texas Austin, Inst Cellular & Mol Biol, Ctr Syst & Synthet Biol, Austin, TX 78712 USA
[2] Univ Texas Austin, Sect Mol Genet & Microbiol, Austin, TX 78712 USA
[3] British Columbia Canc Agcy, Michael Smith Genome Sci Ctr, Vancouver, BC V5Z 4E6, Canada
来源
PLOS BIOLOGY | 2008年 / 6卷 / 03期
关键词
D O I
10.1371/journal.pbio.0060065
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The eukaryotic genome is packaged as chromatin with nucleosomes comprising its basic structural unit, but the detailed structure of chromatin and its dynamic remodeling in terms of individual nucleosome positions has not been completely defined experimentally for any genome. We used ultra-high - throughput sequencing to map the remodeling of individual nucleosomes throughout the yeast genome before and after a physiological perturbation that causes genome-wide transcriptional changes. Nearly 80% of the genome is covered by positioned nucleosomes occurring in a limited number of stereotypical patterns in relation to transcribed regions and transcription factor binding sites. Chromatin remodeling in response to physiological perturbation was typically associated with the eviction, appearance, or repositioning of one or two nucleosomes in the promoter, rather than broader region-wide changes. Dynamic nucleosome remodeling tends to increase the accessibility of binding sites for transcription factors that mediate transcriptional changes. However, specific nucleosomal rearrangements were also evident at promoters even when there was no apparent transcriptional change, indicating that there is no simple, globally applicable relationship between chromatin remodeling and transcriptional activity. Our study provides a detailed, high-resolution, dynamic map of single-nucleosome remodeling across the yeast genome and its relation to global transcriptional changes.
引用
收藏
页码:618 / 630
页数:13
相关论文
共 36 条
[1]   Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome [J].
Albert, Istvan ;
Mavrich, Travis N. ;
Tomsho, Lynn P. ;
Qi, Ji ;
Zanton, Sara J. ;
Schuster, Stephan C. ;
Pugh, B. Franklin .
NATURE, 2007, 446 (7135) :572-576
[2]   Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites [J].
Anderson, JD ;
Widom, J .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (04) :979-987
[3]   Identification and distinct regulation of yeast TATA box-containing genes [J].
Basehoar, AD ;
Zanton, SJ ;
Pugh, BF .
CELL, 2004, 116 (05) :699-709
[4]   Global nucleosome occupancy in yeast [J].
Bernstein, BE ;
Liu, CL ;
Humphrey, EL ;
Perlstein, EO ;
Schreiber, SL .
GENOME BIOLOGY, 2004, 5 (09)
[5]   STRUCTURAL AND FUNCTIONAL REQUIREMENTS FOR THE CHROMATIN TRANSITION AT THE PHO5 PROMOTER IN SACCHAROMYCES-CEREVISIAE UPON PHO5 ACTIVATION [J].
FASCHER, KD ;
SCHMITZ, J ;
HORZ, W .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 231 (03) :658-667
[6]   Genomic run-on evaluates transcription rates for all yeast genes and identifies gene regulatory mechanisms [J].
García-Martínez, J ;
Aranda, A ;
Pérez-Ortín, JE .
MOLECULAR CELL, 2004, 15 (02) :303-313
[7]   Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity [J].
Görner, W ;
Durchschlag, E ;
Martinez-Pastor, MT ;
Estruch, F ;
Ammerer, G ;
Hamilton, B ;
Ruis, H ;
Schüller, C .
GENES & DEVELOPMENT, 1998, 12 (04) :586-597
[8]   Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning [J].
Guillemette, B ;
Bataille, AR ;
Gévry, N ;
Adam, M ;
Blanchette, M ;
Robert, F ;
Gaudreau, L .
PLOS BIOLOGY, 2005, 3 (12) :2100-2110
[9]   Genome-wide analysis of the biology of stress responses through heat shock transcription factor [J].
Hahn, JS ;
Hu, ZZ ;
Thiele, DJ ;
Iyer, VR .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (12) :5249-5256
[10]   Transcriptional regulatory code of a eukaryotic genome [J].
Harbison, CT ;
Gordon, DB ;
Lee, TI ;
Rinaldi, NJ ;
Macisaac, KD ;
Danford, TW ;
Hannett, NM ;
Tagne, JB ;
Reynolds, DB ;
Yoo, J ;
Jennings, EG ;
Zeitlinger, J ;
Pokholok, DK ;
Kellis, M ;
Rolfe, PA ;
Takusagawa, KT ;
Lander, ES ;
Gifford, DK ;
Fraenkel, E ;
Young, RA .
NATURE, 2004, 431 (7004) :99-104