Glycosylation increases potassium channel stability and surface expression in mammalian cells

被引:70
作者
Khanna, R
Myers, MP
Lainé, M
Papazian, DM
机构
[1] Univ Calif Los Angeles, Sch Med, Dept Physiol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Sch Med, Inst Mol Biol, Los Angeles, CA 90095 USA
关键词
D O I
10.1074/jbc.M105248200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
N-linked glycosylation is not required for the cell surface expression of functional Shaker potassium channels in Xenopus oocytes (Santacruz-Toloza, L., Huang, Y., John, S. A., and Papazian, D. M. (1994) Biochemistry 33, 5607-5613). We have now investigated whether glycosylation increases the stability, cell surface expression, and proper folding of Shaker protein expressed in mammalian cells. The turnover rates of wild-type protein and an unglycosylated mutant (N259Q,N263Q) were compared in pulse-chase experiments. The wild-type protein was stable, showing little degradation after 48 h. In contrast, the unglycosylated mutant was rapidly degraded (t(1/2) = similar to 18 h). Lactacystin slowed the degradation of the mutant protein, implicating cytoplasmic proteasomes in its turnover. Rapid lactacystin-sensitive degradation could be conferred on wild-type Shaker by a glycosylation inhibitor. Expression of the unglycosylated mutant on the cell surface, assessed using immunofluorescence microscopy and biotinylation, was dramatically reduced compared with wild type. Folding and assembly were analyzed by oxidizing intersubunit disulfide bonds, which provides a fortuitous hallmark of the native structure. Surprisingly, formation of disulfide-bonded adducts was quantitatively similar in the wildtype and unglycosylated mutant proteins. Our results indicate that glycosylation increases the stability and cell surface expression of Shaker protein but has little effect on acquisition of the native structure.
引用
收藏
页码:34028 / 34034
页数:7
相关论文
共 45 条
[1]  
Basiry SS, 1999, J NEUROSCI, V19, P644
[2]   Contribution of sialic acid to the voltage dependence of sodium channel gating - A possible electrostatic mechanism [J].
Bennett, E ;
Urcan, MS ;
Tinkle, SS ;
Koszowski, AG ;
Levinson, SR .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 109 (03) :327-343
[3]   Stabilization of mutant 46-kDa mannose 6-phosphate receptors by proteasomal inhibitor lactacystin [J].
Breuer, P ;
Braulke, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (50) :33254-33258
[4]   Mannose trimming targets mutant α2-plasmin inhibitor for degradation by the proteasome [J].
Chung, DH ;
Ohashi, K ;
Watanabe, M ;
Miyasaka, N ;
Hirosawa, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (07) :4981-4987
[5]   Degradation of a short-lived glycoprotein from the lumen of the endoplasmic reticulum:: The role of N-linked glycans and the unfolded protein response [J].
de Virgilio, M ;
Kitzmüller, C ;
Schwaiger, E ;
Klein, M ;
Kreibich, G ;
Ivessa, NE .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (12) :4059-4073
[6]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[7]   Setting the standards: Quality control in the secretory pathway [J].
Ellgaard, L ;
Molinari, M ;
Helenius, A .
SCIENCE, 1999, 286 (5446) :1882-1888
[8]   Glycoprotein quality control in the endoplasmic reticulum - Mannose trimming by endoplasmic reticulum mannosidase I times the proteasomal degradation of unassembled immunoglobulin subunits [J].
Fagioli, C ;
Sitia, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (16) :12885-12892
[9]   Lactacystin, proteasome function, and cell fate [J].
Fenteany, G ;
Schreiber, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (15) :8545-8548
[10]   Intracellular functions of N-linked glycans [J].
Helenius, A ;
Aebi, M .
SCIENCE, 2001, 291 (5512) :2364-2369