CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films

被引:1779
作者
Li, Christina W. [1 ]
Kanan, Matthew W. [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
关键词
ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; COPPER; SURFACE; HYDROCARBONS; FABRICATION; ETHYLENE;
D O I
10.1021/ja3010978
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Modified Cu electrodes were prepared by annealing Cu foil in air and electrochemically reducing the resulting Cu2O layers. The CO2 reduction activities of these electrodes exhibited a strong dependence on the initial thickness of the Cu2O layer. Thin Cu2O layers formed by annealing at 130 degrees C resulted in electrodes whose activities were indistinguishable from those of polycrystalline Cu. In contrast, Cu2O layers formed at 500 degrees C that were >= similar to 3 mu m thick resulted in electrodes that exhibited large roughness factors and required 0.5 V less overpotential than polycrystalline Cu to reduce CO2 at a higher rate than H2O. The combination of these features resulted in CO2 reduction geometric current densities > 1 mA/cm(2) at overpotentials < 0.4 V, a higher level of activity than all previously reported metal electrodes evaluated under comparable conditions. Moreover, the activity of the modified electrodes was stable over the course of several hours, whereas a polycrystalline Cu electrode exhibited deactivation within 1 h under identical conditions The electrodes described here may be particularly useful for elucidating the structural properties of Cu that determine the distribution between CO2 and H2O reduction and provide a promising lead for the development of practical catalysts for electrolytic fuel synthesis.
引用
收藏
页码:7231 / 7234
页数:4
相关论文
共 29 条
[1]   Catalysis research of relevance to carbon management: Progress, challenges, and opportunities [J].
Arakawa, H ;
Aresta, M ;
Armor, JN ;
Barteau, MA ;
Beckman, EJ ;
Bell, AT ;
Bercaw, JE ;
Creutz, C ;
Dinjus, E ;
Dixon, DA ;
Domen, K ;
DuBois, DL ;
Eckert, J ;
Fujita, E ;
Gibson, DH ;
Goddard, WA ;
Goodman, DW ;
Keller, J ;
Kubas, GJ ;
Kung, HH ;
Lyons, JE ;
Manzer, LE ;
Marks, TJ ;
Morokuma, K ;
Nicholas, KM ;
Periana, R ;
Que, L ;
Rostrup-Nielson, J ;
Sachtler, WMH ;
Schmidt, LD ;
Sen, A ;
Somorjai, GA ;
Stair, PC ;
Stults, BR ;
Tumas, W .
CHEMICAL REVIEWS, 2001, 101 (04) :953-996
[2]  
Augustynski J, 1998, STUD SURF SCI CATAL, V114, P107
[3]  
Bell A.T., 2007, WORKSH HELD AUG 6 8
[4]   Opportunities and prospects in the chemical recycling of carbon dioxide to fuels [J].
Centi, Gabriele ;
Perathoner, Siglinda .
CATALYSIS TODAY, 2009, 148 (3-4) :191-205
[5]   Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts [J].
Chen, Yihong ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :1986-1989
[6]   Solar Energy Supply and Storage for the Legacy and Non legacy Worlds [J].
Cook, Timothy R. ;
Dogutan, Dilek K. ;
Reece, Steven Y. ;
Surendranath, Yogesh ;
Teets, Thomas S. ;
Nocera, Daniel G. .
CHEMICAL REVIEWS, 2010, 110 (11) :6474-6502
[7]   ELECTROCHEMICAL AND SURFACE STUDIES OF CARBON-DIOXIDE REDUCTION TO METHANE AND ETHYLENE AT COPPER ELECTRODES IN AQUEOUS-SOLUTIONS [J].
DEWULF, DW ;
JIN, T ;
BARD, AJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (06) :1686-1691
[8]   Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces [J].
Durand, William J. ;
Peterson, Andrew A. ;
Studt, Felix ;
Abild-Pedersen, Frank ;
Norskov, Jens K. .
SURFACE SCIENCE, 2011, 605 (15-16) :1354-1359
[9]   ELECTROCHEMICAL REDUCTION OF CO2 AT INTENTIONALLY OXIDIZED COPPER ELECTRODES [J].
FRESE, KW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (11) :3338-3344
[10]   A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper [J].
Gattrell, M. ;
Gupta, N. ;
Co, A. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 594 (01) :1-19