Instantons on the quantum 4-spheres S4q

被引:18
作者
Dabrowski, L
Landi, G
Masuda, T
机构
[1] Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy
[2] Univ Trieste, Dipartimento Sci Matemat, I-34127 Trieste, Italy
[3] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 305, Japan
关键词
D O I
10.1007/PL00005572
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce noncommutative algebras A(q) of quantum 4-spheres S-q(4), with q is an element of R, defined via a suspension of the quantum group SUq (2), and a quantum instanton bundle described by a selfadjoint idempotent e is an element of Mat(4)(A(q)), e(2) = e = e*. Contrary to what happens for the classical case or for the noncommutative instanton constructed in [8], the first Chern-Connes class ch(1) (e) does not vanish thus signaling a dimension drop. The second Chern-Connes class ch(2)(e) does not vanish as well and the couple (ch(1) (e), ch(2)(e)) defines a cycle in the (b, B) bicomplex of cyclic homology.
引用
收藏
页码:161 / 168
页数:8
相关论文
共 21 条
[1]  
ATIYAH MF, 1979, GEOMETRY YANG MILIS
[2]  
BIBIKOV PN, QALG9608012
[3]   Gravity coupled with matter and the foundation of non-commutative geometry [J].
Connes, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 182 (01) :155-176
[4]   Noncommutative manifolds, the instanton algebra and isospectral deformations [J].
Connes, A ;
Landi, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 221 (01) :141-159
[5]   A short survey of noncommutative geometry [J].
Connes, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (06) :3832-3866
[6]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[7]  
Connes A, 1985, Inst. Hautes Etudes Sci. Publ. Math., V62, P41, DOI 10.1007/BF02698807
[8]  
CONNES A, 1998, NONCOMMUTATIVE GEOME, V64, P643
[9]  
DABROWSKI L, MATHQA0101177
[10]   Instantons on noncommutative R4 and projection operators [J].
Furuuchi, K .
PROGRESS OF THEORETICAL PHYSICS, 2000, 103 (05) :1043-1068