Crystallographic studies on multiple conformational states of active-site loops in pyrrolysyl-tRNA synthetase

被引:85
作者
Yanagisawa, Tatsuo [1 ]
Ishii, Ryohei [1 ,2 ]
Fukunaga, Ryuya [1 ,2 ]
Kobayashi, Takatsugu [1 ,2 ]
Sakamoto, Kensaku [1 ,2 ]
Yokoyama, Shigeyuki [1 ,2 ]
机构
[1] RIKEN, Yokohama Inst, Genom Sci Ctr, Protein Res Grp, Yokohama, Kanagawa 2300045, Japan
[2] Univ Tokyo, Grad Sch Sci, Dept Biochem & Biophys, Tokyo 1130033, Japan
关键词
pyrrolysine; tRNA; aminoacyl-tRNA synthetase; pyrrolysyl-tRNA synthetase; conformational changes;
D O I
10.1016/j.jmb.2008.02.045
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pyrrolysine, a lysine derivative with a bulky pyrroline ring, is the "22nd" genetically encoded amino acid. In the present study, the carboxy-terminal catalytic fragment of Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS) was analyzed by X-ray crystallography and site-directed mutagenesis. The catalytic fragment ligated tRNA(Pyl) with pyrrolysine nearly as efficiently as the full-length PylRS. We determined the crystal structures of the PylRS catalytic fragment in the substrate-free, ATP analogue (AMPPNP)bound, and AMPPNP/pyrrolysine-bound forms, and compared them with the previously-reported PylRS structures. The ordering loop and the motif-2 loop undergo conformational changes from the "open" states to the "closed" states upon AMPPNP binding. On the other hand, the beta 7-beta 8 hairpin exhibits multiple conformational states, the open, intermediate (beta 7-open/beta 8-open and beta 7-closed/beta 8-open), and closed states, which are not induced upon substrate binding. The PylRS structures with a docked tRNA suggest that the active-site pocket can accommodate the CCA terminus of tRNA when the motif-2 loop is in the closed state and the beta 7-beta 8 hairpin is in the open or intermediate state. The entrance of the active-site pocket is nearly closed in the closed state of the beta 7-beta 8 hairpin, which may protect the pyrrolysyladenylate intermediate in the absence of tRNA(Pyl). Moreover, a structure-based mutational analysis revealed that hydrophobic residues in the amino acid-binding tunnel are important for accommodating the pyrrolysine side chain and that Asn346 is essential for anchoring the side-chain carbonyl and alpha-ammo groups of pyrrolysine. In addition, a docking model of PylRS with tRNA was constructed based on the aspartyl-tRNA synthetase/tRNA structure, and was confirmed by a mutational analysis. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:634 / 652
页数:19
相关论文
共 56 条
[1]   Crystal structure analysis of the activation of histidine by Thermus thermophilus histidyl-tRNA synthetase [J].
Aberg, A ;
Yaremchuk, A ;
Tukalo, M ;
Rasmussen, B ;
Cusack, S .
BIOCHEMISTRY, 1997, 36 (11) :3084-3094
[2]   Pyrrolysine is not hardwired for cotranslational insertion at UAG codons [J].
Ambrogelly, Alexandre ;
Gundllapalli, Sarath ;
Herring, Stephanie ;
Polycarpo, Carla ;
Frauer, Carina ;
Soll, Dieter .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (09) :3141-3146
[3]   The first step of aminoacylation at the atomic level in histidyl-tRNA synthetase [J].
Arnez, JG ;
Augustine, JG ;
Moras, D ;
Francklyn, CS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (14) :7144-7149
[4]   Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine [J].
Arnez, JG ;
Dock-Bregeon, AC ;
Moras, D .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 286 (05) :1449-1459
[5]   CRYSTAL-STRUCTURE OF HISTIDYL-TRANSFER-RNA SYNTHETASE FROM ESCHERICHIA-COLI COMPLEXED WITH HISTIDYL-ADENYLATE [J].
ARNEZ, JG ;
HARRIS, DC ;
MITSCHLER, A ;
REES, B ;
FRANCKLYN, CS ;
MORAS, D .
EMBO JOURNAL, 1995, 14 (17) :4143-4155
[6]   Biochemistry - The 22nd amino acid [J].
Atkins, JF ;
Gesteland, R .
SCIENCE, 2002, 296 (5572) :1409-1410
[7]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[8]   THE STRUCTURAL BASIS FOR SERYL-ADENYLATE AND AP(4)A SYNTHESIS BY SERYL-TRANSFER-RNA SYNTHETASE [J].
BELRHALI, H ;
YAREMCHUK, A ;
TUKALO, M ;
BERTHETCOLOMINAS, C ;
RASMUSSEN, B ;
BOSECKE, P ;
DIAT, O ;
CUSACK, S .
STRUCTURE, 1995, 3 (04) :341-352
[9]   CRYSTAL-STRUCTURES AT 2.5 ANGSTROM RESOLUTION OF SERYL-TRANSFER-RNA SYNTHETASE COMPLEXED 2 ANALOGS OF SERYL ADENYLATE [J].
BELRHALI, H ;
YAREMCHUK, A ;
TUKALO, M ;
LARSEN, K ;
BERTHETCOLOMINAS, C ;
LEBERMAN, R ;
BEIJER, B ;
SPROAT, B ;
ALSNIELSEN, J ;
GRUBEL, G ;
LEGRAND, JF ;
LEHMANN, M ;
CUSACK, S .
SCIENCE, 1994, 263 (5152) :1432-1436
[10]   The crystal structure of asparaginyl-tRNA synthetase from Thermus thermophilus and its complexes with ATP and asparaginyl-adenylate:: the mechanism of discrimination between asparagine and aspartic acid [J].
Berthet-Colominas, C ;
Seignovert, L ;
Härtlein, M ;
Grotli, M ;
Cusack, S ;
Leberman, R .
EMBO JOURNAL, 1998, 17 (10) :2947-2960