Roles for Drp1, a dynamin-related protein, and milton, a kinesin-associated protein, in mitochondrial segregation, unfurling and elongation during Drosophila spermatogenesis

被引:33
作者
Aldridge, Amanda C. [1 ]
Benson, Levi P. [1 ]
Siegenthaler, Monica M. [1 ]
Whigham, Benjamin T. [1 ]
Stowers, R. Steven [2 ]
Hales, Karen G. [1 ]
机构
[1] Davidson Coll, Dept Biol, Davidson, NC 28035 USA
[2] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
关键词
Drp1; Milton; mitochondria; spermatogenesis; Nebenkern;
D O I
10.4161/fly.3913
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria undergo dramatic rearrangement during Drosophila spermatogenesis. In wild type testes, the many small mitochondria present in pre-meiotic spermatocytes later aggregate, fuse, and interwrap in post-meiotic haploid spermatids to form the spherical Nebenkern, whose two giant mitochondrial compartments later unfurl and elongate beside the growing flagellar axoneme. Drp1 encodes a dynamin-related protein whose homologs in many organisms mediate mitochondrial fission and whose Drosophila homolog is known to govern mitochondrial morphology in neurons. The milton gene encodes an adaptor protein that links mitochondria with kinesin and that is required for mitochondrial transport in Drosophila neurons. To determine the roles of Drp1 and Milton in spermatogenesis, we used the FLP-FRT mitotic recombination system to generate spermatocytes homozygous for mutations in either gene in an otherwise heterozygous background. We found that absence of Drp1 leads to abnormal clustering of mitochondria in mature primary spermatocytes and aberrant unfurling of the mitochondrial derivatives in early Drp1 spermatids undergoing axonemal elongation. In milton spermatocytes, mitochondria are distributed normally; however, after meiosis, the Nebenkern is not strongly anchored to the nucleus, and the mitochondrial derivatives do not elongate properly. Our work defines specific functions for Drp1 and Milton in the anchoring, unfurling, and elongation of mitochondria during sperm formation.
引用
收藏
页码:38 / 46
页数:9
相关论文
共 49 条
[1]   Gene discovery using computational and microarray analysis of transcription in the Drosophila melanogaster testis [J].
Andrews, J ;
Bouffard, GG ;
Cheadle, C ;
Lü, JN ;
Becker, KG ;
Oliver, B .
GENOME RESEARCH, 2000, 10 (12) :2030-2043
[2]   A dynamin-like protein (ADL2b), rather than FtsZ, is involved in Arabidopsis mitochondrial division [J].
Arimura, S ;
Tsutsumi, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5727-5731
[3]   The BDGP gene disruption project: Single transposon insertions associated with 40% of Drosophila genes [J].
Bellen, HJ ;
Levis, RW ;
Liao, GC ;
He, YC ;
Carlson, JW ;
Tsang, G ;
Evans-Holm, M ;
Hiesinger, PR ;
Schulze, KL ;
Rubin, GM ;
Hoskins, RA ;
Spradling, AC .
GENETICS, 2004, 167 (02) :761-781
[4]   The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast [J].
Bleazard, W ;
McCaffery, JM ;
King, EJ ;
Bale, S ;
Mozdy, A ;
Tieu, Q ;
Nunnari, J ;
Shaw, JM .
NATURE CELL BIOLOGY, 1999, 1 (05) :298-304
[5]   Fast transport and retrograde movement of huntingtin and HAP 1 in axons [J].
BlockGalarza, J ;
Chase, KO ;
Sapp, E ;
Vaughn, KT ;
Vallee, RB ;
DiFiglia, M ;
Aronin, N .
NEUROREPORT, 1997, 8 (9-10) :2247-2251
[6]   Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast [J].
Boldogh, IR ;
Yang, HC ;
Nowakowski, WD ;
Karmon, SL ;
Hays, LG ;
Yates, JR ;
Pon, LA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (06) :3162-3167
[7]  
Brill JA, 2000, DEVELOPMENT, V127, P3855
[8]  
Clark IE, 2006, NATURE
[9]   Milton controls the early acquisition of mitochondria by Drosophila oocytes [J].
Cox, Rachel T. ;
Spradling, Allan C. .
DEVELOPMENT, 2006, 133 (17) :3371-3377
[10]   A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis [J].
Cox, RT ;
Spradling, AC .
DEVELOPMENT, 2003, 130 (08) :1579-1590