Principles of redox control in photosynthesis gene expression

被引:96
作者
Pfannschmidt, T
Allen, JF
Oelmüller, R
机构
[1] Univ Jena, Dept Plant Physiol, Inst Gen Bot, D-07743 Jena, Germany
[2] Univ Lund, SE-22100 Lund, Sweden
关键词
D O I
10.1034/j.1399-3054.2001.1120101.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Light is one of the most important environmental factors influencing gene expression in photosynthetic organisms. In particular, genes for components of the photosynthetic machinery show light-dependent expression, In recent years, it has become clear that photosynthesis itself contributes important signals to this light control of gene expression by means of changes in the reduction/oxidation (redox) state of signalling molecules. Such changes in redox state are induced hy changes in quality and quantity of the incident light. Redox signalling mechanisms therefore provide photosynthesis with the possibility of acclimational changes in the structure of the photosynthetic apparatus via a feedback control of photosynthesis gene expression, The great variety of these signalling mechanisms is summarised under the term 'redox control'. In some cases, oxygen acts as a different environmental, light-independent stimulus of photosynthetic gene expression, providing an additional redox signal and a different kind of redox control. In this review, we summarise present knowledge about such redox control mechanisms and analyse common properties as well as differences in the various signalling pathways. We suggest that there is an urgent need for a clear distinction between different hinds of redox control. Accordingly, we propose a categorisation into perceptional and transductional redox control. These categories are defined and examples given. The generalisation and comparability of results obtained in different physiological test systems and species are critically discussed.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 73 条
[1]   A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis [J].
Abdallah, F ;
Salamini, F ;
Leister, D .
TRENDS IN PLANT SCIENCE, 2000, 5 (04) :141-142
[2]   Redox control of psbA gene expression in the cyanobacterium Synechocystis PCC 6803.: Involvement of the cytochrome b6/f complex [J].
Alfonso, M ;
Perewoska, I ;
Kirilovsky, D .
PLANT PHYSIOLOGY, 2000, 122 (02) :505-515
[3]  
Allen JF, 2000, PHILOS T R SOC B, V355, P1351, DOI 10.1098/rstb.2000.0697
[4]   REDOX CONTROL OF GENE-EXPRESSION AND THE FUNCTION OF CHLOROPLAST GENOMES - AN HYPOTHESIS [J].
ALLEN, JF .
PHOTOSYNTHESIS RESEARCH, 1993, 36 (02) :95-102
[5]   REDOX CONTROL OF TRANSCRIPTION - SENSORS, RESPONSE REGULATORS, ACTIVATORS AND REPRESSORS [J].
ALLEN, JF .
FEBS LETTERS, 1993, 332 (03) :203-207
[6]   CONTROL OF GENE-EXPRESSION BY REDOX POTENTIAL AND THE REQUIREMENT FOR CHLOROPLAST AND MITOCHONDRIAL GENOMES [J].
ALLEN, JF .
JOURNAL OF THEORETICAL BIOLOGY, 1993, 165 (04) :609-631
[7]   Redox signalling and the structural basis of regulation of photosynthesis by protein phosphorylation [J].
Allen, JF ;
Nilsson, A .
PHYSIOLOGIA PLANTARUM, 1997, 100 (04) :863-868
[8]   PROTEIN-PHOSPHORYLATION IN REGULATION OF PHOTOSYNTHESIS [J].
ALLEN, JF .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1098 (03) :275-335
[9]   The grand design of photosynthesis: Acclimation of the photosynthetic apparatus to environmental cues [J].
Anderson, JM ;
Chow, WS ;
Park, YI .
PHOTOSYNTHESIS RESEARCH, 1995, 46 (1-2) :129-139
[10]   Reduced levels of cytochrome bf complex in transgenic tobacco leads to marked photochemical reduction of the plastoquinone pool, without significant change in acclimation to irradiance [J].
Anderson, JM ;
Price, GD ;
Chow, WS ;
Hope, AB ;
Badger, MR .
PHOTOSYNTHESIS RESEARCH, 1997, 53 (2-3) :215-227