Mathematical analysis of the mixed Arlequin method

被引:48
作者
Ben Dhia, H [1 ]
Rateau, G
机构
[1] ECP, MSS MAT, CNRS, UMR 8579, F-92295 Chatenay Malabry, France
[2] MMN, EDF DER, F-92141 Clamart, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2001年 / 332卷 / 07期
关键词
D O I
10.1016/S0764-4442(01)01900-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A mixed Arlequin formulation of an elastic problem based on a "volumic" H-1-junction procedure is analyzed The existence and the uniqueness of a solution is proved both in continuous and (generally non-conform) discrete cases, assuming that the finite dimensional spaces satisfy a compatibility condition. Moreover an optimal error estimate is derived. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:649 / 654
页数:6
相关论文
共 12 条
[1]  
[Anonymous], 1988, ELLIPTIC BOUNDARY VA
[2]  
[Anonymous], PROBLEMES AUX LIMITE
[3]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[4]  
Ben Dhia H, 1998, CR ACAD SCI II B, V326, P899, DOI 10.1016/S1251-8069(99)80046-5
[5]  
BENDHIA H, ECCM 99
[6]   ITERATIVE METHODS FOR THE SOLUTION OF ELLIPTIC PROBLEMS ON REGIONS PARTITIONED INTO SUBSTRUCTURES [J].
BJORSTAD, PE ;
WIDLUND, OB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (06) :1097-1120
[7]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[8]  
Ciarlet P.G., 1991, HDB NUMERICAL ANAL 1, P17, DOI DOI 10.1016/S1570-8659(05)80039-0
[9]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[10]  
LADYZHENSKIA OA, 1969, MATH THEORY VISCOUS