Crystal structure representations for machine learning models of formation energies

被引:351
作者
Faber, Felix [1 ,2 ,3 ]
Lindmaa, Alexander [4 ]
von Lilienfeld, O. Anatole [1 ,2 ,3 ,5 ,6 ]
Armiento, Rickard [4 ]
机构
[1] Univ Basel, Dept Chem, CH-4003 Basel, Switzerland
[2] Univ Basel, Inst Phys Chem, CH-4003 Basel, Switzerland
[3] Univ Basel, Natl Ctr Computat Design & Discovery Novel Mat, CH-4003 Basel, Switzerland
[4] Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden
[5] Argonne Leadership Comp Facil, Lemont, IL 60439 USA
[6] Argonne Natl Lab, Lemont, IL 60439 USA
基金
瑞典研究理事会; 瑞士国家科学基金会;
关键词
machine learning; formation energies; representations; crystal structure; periodic systems; CHEMICAL UNIVERSE; VIRTUAL EXPLORATION;
D O I
10.1002/qua.24917
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a dataset of 3938 crystal structures obtained from the Materials Project. For training sets consisting of 3000 crystals, the generalization error in predicting formation energies of new structures corresponds to (i) 0.49, (ii) 0.64, and (iii) 0.37eV/atom for the respective representations. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1094 / 1101
页数:8
相关论文
共 42 条
  • [1] Machine learning for many-body physics: The case of the Anderson impurity model
    Arsenault, Louis-Francois
    Lopez-Bezanilla, Alejandro
    von Lilienfeld, O. Anatole
    Millis, Andrew J.
    [J]. PHYSICAL REVIEW B, 2014, 90 (15)
  • [2] Machine-learning approach for one- and two-body corrections to density functional theory: Applications to molecular and condensed water
    Bartok, Albert P.
    Gillan, Michael J.
    Manby, Frederick R.
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW B, 2013, 88 (05)
  • [3] On representing chemical environments
    Bartok, Albert P.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW B, 2013, 87 (18)
  • [4] New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design
    Belsky, A
    Hellenbrandt, M
    Karen, VL
    Luksch, P
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 : 364 - 369
  • [5] THE INORGANIC CRYSTAL-STRUCTURE DATA-BASE
    BERGERHOFF, G
    HUNDT, R
    SIEVERS, R
    BROWN, ID
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1983, 23 (02): : 66 - 69
  • [6] 970 Million Druglike Small Molecules for Virtual Screening in the Chemical Universe Database GDB-13
    Blum, Lorenz C.
    Reymond, Jean-Louis
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (25) : 8732 - +
  • [7] Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
  • [8] Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional
    Ernzerhof, M
    Scuseria, GE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (11) : 5029 - 5036
  • [9] Ernzerhof M, 1997, INT J QUANTUM CHEM, V64, P285, DOI 10.1002/(SICI)1097-461X(1997)64:3<285::AID-QUA2>3.0.CO
  • [10] 2-S