On characterizations of multiwavelets in L2 (Rn)

被引:32
作者
Bownik, M
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Washington Univ, Dept Math, St Louis, MO 63130 USA
关键词
Bessel family; affine frame; quasi affine frame; (multi)wavelet;
D O I
10.1090/S0002-9939-01-05942-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new approach to characterizing (multi)wavelets by means of basic equations in the Fourier domain. Our method yields an uncomplicated proof of the two basic equations and a new characterization of orthonormality and completeness of (multi)wavelets.
引用
收藏
页码:3265 / 3274
页数:10
相关论文
共 16 条
[1]  
[Anonymous], 1996, 1 COURSE WAVELETS, DOI DOI 10.1201/9781420049985
[2]   The structure of shift-invariant subspaces of L2(Rn) [J].
Bownik, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 177 (02) :282-309
[3]   A characterization of affine dual frames in L2 (Rn) [J].
Bownik, M .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 8 (02) :203-221
[4]  
BOWNIK M, 2000, THESIS WASHINGTON U
[5]   Wavelets on general lattices, associated with general expanding maps of Rn [J].
Calogero, A .
ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 5 :1-10
[6]  
CALOGERO A, IN PRESS J GEOM ANAL
[7]   Affine frames, quasi-affine frames, and their duals [J].
Chui, CK ;
Shi, XL ;
Stockler, J .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1998, 8 (1-2) :1-17
[8]   A characterization of functions that generate wavelet and related expansion [J].
Frazier, M ;
Garrigos, G ;
Wang, KC ;
Weiss, G .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (Suppl 1) :883-906
[9]   Completeness in the set of wavelets [J].
Garrigós, G ;
Speegle, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) :1157-1166
[10]  
Grochenig K., 1994, J FOURIER ANAL APPL, V1, P131, DOI DOI 10.1007/S00041-001-4007-6