Neuronal activation by GPI-linked neuroligin-1 displayed in synthetic lipid bilayer membranes

被引:26
作者
Baksh, MM
Dean, C
Pautot, S
DeMaria, S
Isacoff, E
Groves, JT [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
关键词
D O I
10.1021/la051243d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have characterized, in vitro, interactions between hippocampal neuronal cells and silica microbeads coated with synthetic, fluid, lipid bilayer membranes containing the glycosylphosphatidyl inositol (GPI)-linked extracellular domain of the postsynaptic membrane protein neuroligin-1. These bilayer-neuroligin-1 beads activated neuronal cells to form presynaptic nerve terminals at the point of contact in a manner similar to that observed for live PC 12 cells, ectopically expressing the full length neuroligin-1. The synthetic membranes exhibited biological activity at neuroligin-1 densities of similar to 1 to 6 proteins/mu m(2). Polyolycarbonate beads with neuroligin-1 covalently attached to the surface failed to activate neurons despite the fact that neuroligin-1 binding activity is preserved. This implies that a lipid membrane environment is likely to be essential for neuroligin-1 activity. This technique allows the study of isolated proteins in an environment that has physical properties resembling those of a cell surface; proteins can diffuse freely within the membrane, retain their in vivo orientations, and are in a nondenatured state. In addition, the synthetic membrane environment affords control over both lipid and protein composition. This technology is easily implemented and can be applied to a wide variety of cellular studies.
引用
收藏
页码:10693 / 10698
页数:6
相关论文
共 29 条
[1]   Detection of molecular interactions at membrane surfaces through colloid phase transitions [J].
Baksh, MM ;
Jaros, M ;
Groves, JT .
NATURE, 2004, 427 (6970) :139-141
[2]   RAT HIPPOCAMPAL NEURONS IN DISPERSED CELL-CULTURE [J].
BANKER, GA ;
COWAN, WM .
BRAIN RESEARCH, 1977, 126 (03) :397-425
[3]   PHYSICAL-PROPERTIES OF SINGLE PHOSPHOLIPID-BILAYERS ADSORBED TO MICRO GLASS-BEADS - A NEW VESICULAR MODEL SYSTEM STUDIED BY H-2-NUCLEAR MAGNETIC-RESONANCE [J].
BAYERL, TM ;
BLOOM, M .
BIOPHYSICAL JOURNAL, 1990, 58 (02) :357-362
[4]   Receptor clustering as a cellular mechanism to control sensitivity [J].
Bray, D ;
Levin, MD ;
Morton-Firth, CJ .
NATURE, 1998, 393 (6680) :85-88
[5]   OPTIMIZED SURVIVAL OF HIPPOCAMPAL-NEURONS IN B27-SUPPLEMENTED NEUROBASAL(TM), A NEW SERUM-FREE MEDIUM COMBINATION [J].
BREWER, GJ ;
TORRICELLI, JR ;
EVEGE, EK ;
PRICE, PJ .
JOURNAL OF NEUROSCIENCE RESEARCH, 1993, 35 (05) :567-576
[6]   Biomimetic molecular assemblies on glass and mesoporous silica microbeads for biotechnology [J].
Buranda, T ;
Huang, J ;
Ramarao, GV ;
Ista, LK ;
Larson, RS ;
Ward, TL ;
Sklar, LA ;
Lopez, GP .
LANGMUIR, 2003, 19 (05) :1654-1663
[7]   INFLUENCE OF RECEPTOR LATERAL MOBILITY ON ADHESION STRENGTHENING BETWEEN MEMBRANES CONTAINING LFA-3 AND CD2 [J].
CHAN, PY ;
LAWRENCE, MB ;
DUSTIN, ML ;
FERGUSON, LM ;
GOLAN, DE ;
SPRINGER, TA .
JOURNAL OF CELL BIOLOGY, 1991, 115 (01) :245-255
[8]   The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers [J].
Cochran, JR ;
Cameron, TO ;
Stern, LJ .
IMMUNITY, 2000, 12 (03) :241-250
[9]   Neurexin mediates the assembly of presynaptic terminals [J].
Dean, C ;
Scholl, FG ;
Choih, J ;
DeMaria, S ;
Berger, J ;
Isacoff, E ;
Scheiffele, P .
NATURE NEUROSCIENCE, 2003, 6 (07) :708-716
[10]   Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area [J].
Dustin, ML ;
Ferguson, LM ;
Chan, PY ;
Springer, TA ;
Golan, DE .
JOURNAL OF CELL BIOLOGY, 1996, 132 (03) :465-474