SuperHirn -: a novel tool for high resolution LC-MS-based peptide/protein profiling

被引:240
作者
Mueller, Lukas N.
Rinner, Oliver
Schmidt, Alexander
Letarte, Simon
Bodenmiller, Bernd
Brusniak, Mi-Youn
Vitek, Olga
Aebersold, Ruedi
Mueller, Markus
机构
[1] ETH Honggerberg, ETHZ, Inst Mol Syst Biol, CH-8093 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Competence Ctr Syst Physiol & Metab Dis, Zurich, Switzerland
[3] Inst Syst Biol, Seattle, WA USA
[4] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
[5] Univ Zurich, Fac Sci, Zurich, Switzerland
关键词
label-free quantification; LC-MS; protein profiling; quantitative proteornics;
D O I
10.1002/pmic.200700057
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Label-free quantification of high mass resolution LC-MS data has emerged as a promising technology for proteome analysis. Computational methods are required for the accurate extraction of peptide signals from LC-MS data and the tracking of these features across the measurements of different samples. We present here an open source software tool, SuperHirn, that comprises a set of modules to process LC-MS data acquired on a high resolution mass spectrometer. The program includes newly developed functionalities to analyze LC-MS data such as feature extraction and quantification, LC-MS similarity analysis, LC-MS alignment of multiple datasets, and intensity normalization. These program routines extract profiles of measured features and comprise tools for clustering and classification analysis of the profiles. SuperHirn was applied in an MS1-based profiling approach to a benchmark LC-MS dataset of complex protein mixtures with defined concentration changes. We show that the program automatically detects profiling trends in an unsupervised manner and is able to associate proteins to their correct theoretical dilution profile.
引用
收藏
页码:3470 / 3480
页数:11
相关论文
共 38 条
[1]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[2]   Proteomic characterization of the human centrosome by protein correlation profiling [J].
Andersen, JS ;
Wilkinson, CJ ;
Mayor, T ;
Mortensen, P ;
Nigg, EA ;
Mann, M .
NATURE, 2003, 426 (6966) :570-574
[3]   A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS [J].
Bellew, Matthew ;
Coram, Marc ;
Fitzgibbon, Matthew ;
Igra, Mark ;
Randolph, Tim ;
Wang, Pei ;
May, Damon ;
Eng, Jimmy ;
Fang, Ruihua ;
Lin, ChenWei ;
Chen, Jinzhi ;
Goodlett, David ;
Whiteaker, Jeffrey ;
Paulovich, Amanda ;
McIntosh, Martin .
BIOINFORMATICS, 2006, 22 (15) :1902-1909
[4]  
Black P. E., 2006, DICT ALGORITHMS DATA
[5]   Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics [J].
Callister, SJ ;
Barry, RC ;
Adkins, JN ;
Johnson, ET ;
Qian, WJ ;
Webb-Robertson, BJM ;
Smith, RD ;
Lipton, MS .
JOURNAL OF PROTEOME RESEARCH, 2006, 5 (02) :277-286
[6]   ROBUST LOCALLY WEIGHTED REGRESSION AND SMOOTHING SCATTERPLOTS [J].
CLEVELAND, WS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1979, 74 (368) :829-836
[7]   PROCESSING DATA FOR OUTLIERS [J].
DIXON, WJ .
BIOMETRICS, 1953, 9 (01) :74-89
[8]   Semi-supervised LC/MS alignment for differential proteomics [J].
Fischer, Bernd ;
Grossmann, Jonas ;
Roth, Volker ;
Gruissem, Wilhelm ;
Baginsky, Sacha ;
Buhmann, Joachim M. .
BIOINFORMATICS, 2006, 22 (14) :E132-E140
[9]  
Gras R, 1999, ELECTROPHORESIS, V20, P3535, DOI 10.1002/(SICI)1522-2683(19991201)20:18<3535::AID-ELPS3535>3.3.CO
[10]  
2-A