Carbon Nanotube-ZnO Nanosphere Heterostructures: Low-Temperature Chemical Reaction Synthesis, Photoluminescence, and Their Application for Room Temperature NH3 Gas Sensor

被引:46
作者
Zhang, Hui
Du, Ning
Chen, Bingdi
Li, Dongshen
Yang, Deren [1 ]
机构
[1] State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
关键词
CNT-ZnO Nanosphere Heterostructures; Low-Temperature Chemical Reaction; Photoluminescence; Gas Sensor; NANOWIRES; NANOCOMPOSITES; NANOPARTICLES; NANORODS; GROWTH; GOLD;
D O I
10.1166/sam.2009.1002
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A simple approach was developed to synthesize carbon nanotube (CNT)-ZnO nanosphere heterostructures by chemical reaction of zinc chloride and triethanolamine at 90 degrees C using CNT as a matrix. The morphology and structure of the CNT-ZnO nanosphere heterostructures were characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). The photoluminescence (PL) analysis of the CNT-ZnO nanosphere heterostructures exhibited a relatively decreased and broadened emission at 390 nm due to the charge transfer from ZnO nanospheres to CNT. Moreover, the CNT-ZnO nanosphere heterostructures were applied as ammonia gas sensors at room temperature, which exhibited promising performance due to their high surface-volume ratios and good conductivity of CNTs.
引用
收藏
页码:13 / 17
页数:5
相关论文
共 42 条
[1]   Nanotubes from carbon [J].
Ajayan, PM .
CHEMICAL REVIEWS, 1999, 99 (07) :1787-1799
[2]   A highly selective ammonia gas sensor using surface-ruthenated zinc oxide [J].
Aslam, M ;
Chaudhary, VA ;
Mulla, IS ;
Sainkar, SR ;
Mandale, AB ;
Belhekar, AA ;
Vijayamohanan, K .
SENSORS AND ACTUATORS A-PHYSICAL, 1999, 75 (02) :162-167
[3]   Heterostructures of ZnO nanorods with various one-dimensional nanostructures [J].
Bae, SY ;
Seo, HW ;
Choi, HC ;
Park, J ;
Park, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (33) :12318-12326
[4]   Carbon nanotube/CdS core-shell nanowires prepared by a simple room-temperature chemical reduction method [J].
Cao, J ;
Sun, JZ ;
Hong, J ;
Li, HY ;
Chen, HZ ;
Wang, M .
ADVANCED MATERIALS, 2004, 16 (01) :84-+
[5]   Carbon-nanotube-templated assembly of rare-earth phthalocyanine nanowires [J].
Cao, L ;
Chen, HZ ;
Zhou, HB ;
Zhu, L ;
Sun, JZ ;
Zhang, XB ;
Xu, JM ;
Wang, M .
ADVANCED MATERIALS, 2003, 15 (11) :909-+
[6]   Field-emission behavior of a carbon-nanotube-implanted Co nanocomposite fabricated from pearl-necklace-structured carbon nanotube/Co powders [J].
Cha, SI ;
Kim, KT ;
Arshad, SN ;
Mo, CB ;
Lee, KH ;
Hong, SH .
ADVANCED MATERIALS, 2006, 18 (05) :553-+
[7]  
CHEN R, 2005, J AM CHEM SOC, V123, P3838
[8]   The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures [J].
Chen, Yujin ;
Zhu, Chunling ;
Wang, Taihong .
NANOTECHNOLOGY, 2006, 17 (12) :3012-3017
[9]   Gold and silver coated carbon nanotubes: An improved broad-band optical limiter [J].
Chin, KC ;
Gohel, A ;
Chen, WZ ;
Elim, HI ;
Ji, W ;
Chong, GL ;
Sow, CH ;
Wee, ATS .
CHEMICAL PHYSICS LETTERS, 2005, 409 (1-3) :85-88
[10]   Layer-by-layer assembly of multiwall carbon nanotubes on spherical colloids [J].
Correa-Duarte, MA ;
Kosiorek, A ;
Kandulski, W ;
Giersig, M ;
Liz-Marzán, LM .
CHEMISTRY OF MATERIALS, 2005, 17 (12) :3268-3272