Stabilizing the subtilisin BPN′ pro-domain by phage display selection:: How restrictive is the amino acid code for maximum protein stability?

被引:37
作者
Ruan, B [1 ]
Hoskins, J [1 ]
Wang, L [1 ]
Bryan, PN [1 ]
机构
[1] Univ Maryland, Inst Biotechnol, Ctr Adv Res Biotechnol, Rockville, MD 20850 USA
关键词
combinatorial genetics; protein folding; site-directed mutagenesis; stopped flow kinetics; thermodynamics;
D O I
10.1002/pro.5560071111
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have devised a procedure using monovalent phage display to select for stable mutants in the pro-domain of the serine protease, subtilisin BPN'. In complex with subtilisin, the pro-domain assumes a compact structure with a four-stranded antiparallel beta-sheet and two three-turn alpha-helices. When isolated, however, the pro-domain is 97% unfolded. These experiments use combinatorial mutagenesis to select for stabilizing amino acid combinations at a particular structural locus and determine how many combinations are close to the maximum protein stability. The selection for stability is based on the fact that the independent stability of the pro-domain is very low and that binding to subtilisin is thermodynamically linked to folding. Two libraries of mutant pro-domains were constructed and analyzed to determine how many combinations of amino acids at a particular structural locus result in the maximum stability. A library comprises all combinations of four amino acids at a structural locus. Previous studies using combinatorial genetics have shown that many different combinations of amino acids can be accommodated ina selected locus without destroying function. The present results indicate that the number of sequence combinations at a structural locus, which are close to the maximum stability, is small. The most striking example is a selection at an interior locus of the pro-domain. After two rounds of phagemid selection, one amino acid combination is found in 40% of sequenced mutants. The most frequently selected mutant has a Delta G(unfolding) = 4 kcal/mol at 25 degrees C, an increase of 6 kcal/mol relative to the naturally occurring sequence. Some implications of these results on the amount of sequence information needed to specify a unique tertiary fold are discussed. Apart from possible implications on the folding code, the phage display selection described here should be useful in optimizing the stability of other proteins, which can be displayed on the phage surface.
引用
收藏
页码:2345 / 2353
页数:9
相关论文
共 38 条
[1]   THERMODYNAMIC ANALYSIS OF THE FOLDING OF THE STREPTOCOCCAL PROTEIN-G IGG-BINDING DOMAINS B1 AND B2 - WHY SMALL PROTEINS TEND TO HAVE HIGH DENATURATION TEMPERATURES [J].
ALEXANDER, P ;
FAHNESTOCK, S ;
LEE, T ;
ORBAN, J ;
BRYAN, P .
BIOCHEMISTRY, 1992, 31 (14) :3597-3603
[2]   PROTEIN STABILITY CURVES [J].
BECKTEL, WJ ;
SCHELLMAN, JA .
BIOPOLYMERS, 1987, 26 (11) :1859-1877
[3]   DE-NOVO PROTEIN DESIGN - FROM MOLTEN GLOBULES TO NATIVE-LIKE STATES [J].
BETZ, SF ;
RALEIGH, DP ;
DEGRADO, WF .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1993, 3 (04) :601-610
[5]   ENERGETICS OF FOLDING SUBTILISIN BPN' [J].
BRYAN, P ;
ALEXANDER, P ;
STRAUSBERG, S ;
SCHWARZ, F ;
LAN, W ;
GILLILAND, G ;
GALLAGHER, DT .
BIOCHEMISTRY, 1992, 31 (21) :4937-4945
[6]   CATALYIS OF A PROTEIN-FOLDING REACTION - MECHANISTIC IMPLICATIONS OF THE 2.0 ANGSTROM STRUCTURE OF THE SUBTILISIN-PRODOMAIN COMPLEX [J].
BRYAN, P ;
WANG, L ;
HOSKINS, J ;
RUVINOV, S ;
STRAUSBERG, S ;
ALEXANDER, P ;
ALMOG, O ;
GILLILAND, G ;
GALLAGHER, T .
BIOCHEMISTRY, 1995, 34 (32) :10310-10318
[7]   Sequence space, folding and protein design [J].
Cordes, MHJ ;
Davidson, AR ;
Sauer, RT .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1996, 6 (01) :3-10
[8]   DE-NOVO DESIGN OF THE HYDROPHOBIC CORES OF PROTEINS [J].
DESJARLAIS, JR ;
HANDEL, TM .
PROTEIN SCIENCE, 1995, 4 (10) :2006-2018
[9]   THE PROSEGMENT-SUBTILISIN BPN COMPLEX - CRYSTAL-STRUCTURE OF A SPECIFIC FOLDASE [J].
GALLAGHER, T ;
GILLILAND, G ;
WANG, L ;
BRYAN, P .
STRUCTURE, 1995, 3 (09) :907-914
[10]   A test of the ''jigsaw puzzle'' model for protein folding by multiple methionine substitutions within the core of T4 lysozyme [J].
Gassner, NC ;
Baase, WA ;
Matthews, BW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (22) :12155-12158