Charge-transfer mechanism for cytochrome c adsorbed on nanometer thick films.: Distinguishing frictional control from conformational gating

被引:119
作者
Khoshtariya, DE [1 ]
Wei, JJ [1 ]
Liu, HY [1 ]
Yue, HJ [1 ]
Waldeck, DH [1 ]
机构
[1] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA
关键词
D O I
10.1021/ja034719t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Using nanometer thick tunneling barriers with specifically attached cytochrome c, the electron-transfer rate constant was studied as a function of the SAM composition (alkane versus terthiophene), the omega-terminating group type (pyridine, imidazole, nitrile), and the solution viscosity. At large electrode-reactant separations, the pyridine terminated alkanethiols exhibit an exponential decline of the rate constant with increasing electron-transfer distance. At short separations, a plateau behavior, analogous to systems involving -COOH terminal groups to which cytochrome c can be attached electrostatically, is observed. The dependence of the rate constant in the plateau region on system properties is investigated. The rate constant is insensitive to the mode of attachment to the surface but displays a significant viscosity dependence, change with spacer composition (alkane versus terthiophene), and nature of the solvent (H2O versus D2O). Based on these findings and others, the conclusion is drawn that the charge-transfer rate constant at short distance is determined by polarization relaxation processes in the structure, rather than the electron tunneling probability or large-amplitude conformational rearrangement (gating). The transition in reaction mechanism with distance reflects a gradual transition between the tunneling and frictional mechanisms. This conclusion is consistent with data from a number of other sources as well.
引用
收藏
页码:7704 / 7714
页数:11
相关论文
共 93 条
[1]   Facile, regioselective synthesis of highly solvatochromic thiophene-spaced N-alkylpyridinium dicyanomethanides for second-harmonic generation [J].
Abbotto, A ;
Bradamante, S ;
Facchetti, A ;
Pagani, GA .
JOURNAL OF ORGANIC CHEMISTRY, 1997, 62 (17) :5755-5765
[2]   An electrochemical approach to investigate gated electron transfer using a physiological model system:: Cytochrome c immobilized on carboxylic acid-terminated alkanethiol self-assembled monolayers on gold electrodes [J].
Avila, A ;
Gregory, BW ;
Niki, K ;
Cotton, TM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (12) :2759-2766
[3]   Solution structure of oxidized horse heart cytochrome c [J].
Banci, L ;
Bertini, I ;
Gray, HB ;
Luchinat, C ;
Reddig, T ;
Rosato, A ;
Turano, P .
BIOCHEMISTRY, 1997, 36 (32) :9867-9877
[4]   Contemporary issues in electron transfer research [J].
Barbara, PF ;
Meyer, TJ ;
Ratner, MA .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13148-13168
[5]  
BARD AJ, 1980, ELECTROCHEMICAL METH
[6]   INFLUENCE OF MEDIUM DYNAMICS ON SOLVATION AND CHARGE SEPARATION REACTIONS - COMPARISON OF A SIMPLE ALCOHOL AND A PROTEIN SOLVENT [J].
BASHKIN, JS ;
MCLENDON, G ;
MUKAMEL, S ;
MAROHN, J .
JOURNAL OF PHYSICAL CHEMISTRY, 1990, 94 (12) :4757-4761
[7]   Protein electron transfer reorganization energy spectrum from normal mode analysis.: 2.: Application to Ru-modified cytochrome c [J].
Basu, G ;
Kitao, A ;
Kuki, A ;
Go, N .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (11) :2085-2094
[8]   Redox thermodynamics of the Fe3+/Fe2+ couple in horseradish peroxidase and its cyanide complex [J].
Battistuzzi, G ;
Borsari, M ;
Ranieri, A ;
Sola, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (01) :26-27
[9]   Control of cytochrome c redox potential:: Axial ligation and protein environment effects [J].
Battistuzzi, G ;
Borsari, M ;
Cowan, JA ;
Ranieri, A ;
Sola, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (19) :5315-5324
[10]   SOLVENT VISCOSITY AND PROTEIN DYNAMICS [J].
BEECE, D ;
EISENSTEIN, L ;
FRAUENFELDER, H ;
GOOD, D ;
MARDEN, MC ;
REINISCH, L ;
REYNOLDS, AH ;
SORENSEN, LB ;
YUE, KT .
BIOCHEMISTRY, 1980, 19 (23) :5147-5157