Pigment epithelium-derived factor (PEDF) binds to glycosaminoglycans: Analysis of the binding site

被引:99
作者
Alberdi, E [1 ]
Hyde, CC [1 ]
Becerra, SP [1 ]
机构
[1] NEI, Retinal Cell & Mol Biol Lab, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1021/bi9802317
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pigment epithelium-derived factor (PEDF), a neurotrophic protein, is a secreted serpin identified in extracellular matrixes. We show that PEDF extractions from the interphotoreceptor matrix are more efficient with increasing NaCl concentrations, indicating that ionic interactions mediate its association with this polyanionic matrix. We have used affinity chromatography and ultrafiltration to probe for direct binding of PEDF to glycosaminoglycans/polyanions. Correctly folded PEDF bound to immobilized heparin, chondroitin sulfate-A, -B, -C, and dextran sulfate columns and eluted from each with an increase in NaCl concentration. However, in the presence of urea, the protein lost its affinity for heparin. Binding of PEDF to heparan sulfate proteoglycan in solution was in a concentration-dependent fashion (half-maximal specific binding EC50 = 40 mu g/mL) and was sensitive to increasing NaCl concentrations. The glycosaminoglycan-binding region was analyzed using chemical modification and limited proteolysis. PEDF chemically modified on lysine residues by biotinylation lost its capacity for interacting with heparin, implicating the involvement of PEDF lysine residues in heparin binding. Cleavage of the serpin-exposed loop with chymotrypsin did not affect the heparin-binding property. A limited proteolysis product containing residues 21-similar to 260 bound to heparin with similar affinity as the intact PEDF. Homology modeling of PEDF based on the X-ray crystal structures of antithrombin III and ovalbumin shows a region at the center of beta-sheet A-strands 2 and 3-and helix F that has a basic electrostatic surface potential and is densely populated with lysines exposed to the surface (K134, K137, K189, K191, H212, and K214) that are available to interact with various glycosaminoglycans/polyanions. This region represents a novel site for glycosaminoglycan binding in a serpin, which in PEDF, is distinct and nonoverlapping from the PEDF neurotrophic active region.
引用
收藏
页码:10643 / 10652
页数:10
相关论文
共 37 条
[1]  
ADLER AJ, 1982, EXP EYE RES, V43, P23
[2]   The SWISS-PROT protein sequence data bank and its new supplement TREMBL [J].
Bairoch, A ;
Apweiler, R .
NUCLEIC ACIDS RESEARCH, 1996, 24 (01) :21-25
[3]   PIGMENT EPITHELIUM-DERIVED FACTOR BEHAVES LIKE A NONINHIBITORY SERPIN - NEUROTROPHIC ACTIVITY DOES NOT REQUIRE THE SERPIN REACTIVE LOOP [J].
BECERRA, SP ;
SAGASTI, A ;
SPINELLA, P ;
NOTARIO, V .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (43) :25992-25999
[4]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[5]  
BOLA EE, 1987, CRYSTALLOGRAPHIC DAT, P107
[6]   Heparan sulfate proteoglycan synthesis and its expression are decreased in the retina of diabetic rats [J].
Bollineni, JS ;
Alluru, I ;
Reddi, AS .
CURRENT EYE RESEARCH, 1997, 16 (02) :127-130
[7]   HEPARAN SULFATES MEDIATE THE BINDING OF BASIC FIBROBLAST GROWTH-FACTOR TO A SPECIFIC RECEPTOR ON NEURAL PRECURSOR CELLS [J].
BRICKMAN, YG ;
FORD, MD ;
SMALL, DH ;
BARTLETT, PF ;
NURCOMBE, V .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (42) :24941-24948
[8]   CHONDROITIN SULFATE AS A REGULATOR OF NEURONAL PATTERNING IN THE RETINA [J].
BRITTIS, PA ;
CANNING, DR ;
SILVER, J .
SCIENCE, 1992, 255 (5045) :733-736
[9]   ANALYSIS OF PROTEOGLYCAN EXPRESSION IN DEVELOPING CHICKEN BRAIN - CHARACTERIZATION OF A HEPARAN-SULFATE PROTEOGLYCAN THAT INTERACTS WITH THE NEURAL CELL-ADHESION MOLECULE [J].
BURG, MA ;
HALFTER, W ;
COLE, GJ .
JOURNAL OF NEUROSCIENCE RESEARCH, 1995, 41 (01) :49-64
[10]   THE HEPARIN-BINDING (FIBROBLAST) GROWTH-FACTOR FAMILY OF PROTEINS [J].
BURGESS, WH ;
MACIAG, T .
ANNUAL REVIEW OF BIOCHEMISTRY, 1989, 58 :575-606