A unified, long-term, high-latitude stratospheric aerosol and cloud database using SAM II, SAGE II, and POAM II/III data: Algorithm description, database definition, and climatology

被引:44
作者
Fromm, M
Alfred, J
Pitts, M
机构
[1] Computat Phys Inc, Springfield, VA 22151 USA
[2] NASA, Langley Res Ctr, Hampton, VA 23665 USA
关键词
PSC; aerosol; stratosphere; SAM; POAM; SAGE;
D O I
10.1029/2002JD002772
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A 22 year, high-latitude, stratospheric aerosol and cloud database has been formed in a "unified'' manner by combining the Stratospheric Aerosol Measurement (SAM) II, Stratospheric Aerosol and Gas Measurement ( SAGE) II, Polar Ozone and Aerosol Measurement (POAM) II, and POAM III 1 mum aerosol extinction profiles. The database is "unified'' in that it embodies similar aerosol extinction measurements, uses a single meteorological data set, and employs a single algorithm for calculating background extinction and cloud detection thresholds. Latitude is constrained to poleward of 45degrees in each hemisphere. The Unified cloud detection algorithm and database are designed for the straightforward addition of new data when other compatible data sets (e.g., SAGE III) become available. "Unified'' cloud detection is similar to, but a refinement of, earlier attempts to identify polar stratospheric clouds (PSCs) with SAM II and POAM II data. The Unified algorithm is instrument-independent and circumvents fundamental cloud detection pitfalls. The database contains over 73,000 (36,000) polar vortex-region profiles in the Antarctic (Arctic) and over 21,000 (2000) PSC observations. An introductory climatology of Unified "background'' extinction is presented. It is seen that volcanic effects dominate the evolution of outside-vortex background extinctions, but perturbations apparently not related to volcanoes are seen as well. Interannual variations of background extinction fsinside the austral vortex are seen to be nearly decoupled from volcanic effects, while in the Arctic, inside-vortex extinctions show a considerable volcanic influence. An analysis of long-term PSC sighting is presented. Midwinter (July and January) PSC and clear-sky measurements at 20 km, in a fixed temperature range, are used for computing PSC probability. The grand average PSC probability calculated this way is nearly identical between hemispheres. In the Antarctic the interannual PSC probability pattern is distinctly cyclic but is convoluted by volcanic perturbations in background aerosol. In the Arctic the PSC probability has much less temporal coherence than in the Antarctic but is similarly impacted by volcanic background increases. An explanation for the variation in PSC probabilities, in terms of interannual differences in denitrification, is discussed. Finally, a statistical analysis of tropopause height in relation to PSC formation is also presented. PSC observations are seen to be strongly associated with elevated tropopause heights, indicating that tropospheric, synoptic-scale flow perturbations are the primary forcing mechanism for Arctic PSC formation, as evidenced in this long-term satellite record.
引用
收藏
页数:17
相关论文
共 57 条
[1]   Observations and analysis of polar stratospheric clouds detected by POAM III during the 1999/2000 Northern Hemisphere winter -: art. no. 8281 [J].
Bevilacqua, RM ;
Fromm, MD ;
Alfred, JM ;
Hornstein, JS ;
Nedoluha, GE ;
Hoppel, KW ;
Lumpe, JD ;
Randall, CE ;
Shettle, EP ;
Browell, EV ;
Butler, C ;
Dörnbrack, A ;
Strawa, AW .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D20)
[2]   POAM II ozone observations in the Antarctic ozone hole in 1994, 1995, and 1996 [J].
Bevilacqua, RM ;
Aellig, CP ;
Debrestian, DJ ;
Fromm, MD ;
Hoppel, K ;
Lumpe, JD ;
Shettle, EP ;
Hornstein, JS ;
Randall, CE ;
Rusch, DW ;
Rosenfield, JE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D19) :23643-23657
[3]   Modeling the composition of liquid stratospheric aerosols [J].
Carslaw, KS ;
Peter, T ;
Clegg, SL .
REVIEWS OF GEOPHYSICS, 1997, 35 (02) :125-154
[4]  
DANIELSEN EF, 1968, J ATMOS SCI, V25, P502, DOI 10.1175/1520-0469(1968)025<0502:STEBOR>2.0.CO
[5]  
2
[6]   The detection of large HNO3-containing particles in the winter arctic stratosphere [J].
Fahey, DW ;
Gao, RS ;
Carslaw, KS ;
Kettleborough, J ;
Popp, PJ ;
Northway, MJ ;
Holecek, JC ;
Ciciora, SC ;
McLaughlin, RJ ;
Thompson, TL ;
Winkler, RH ;
Baumgardner, DG ;
Gandrud, B ;
Wennberg, PO ;
Dhaniyala, S ;
McKinney, K ;
Peter, T ;
Salawitch, RJ ;
Bui, TP ;
Elkins, JW ;
Webster, CR ;
Atlas, EL ;
Jost, H ;
Wilson, JC ;
Herman, RL ;
Kleinböhl, A ;
von König, M .
SCIENCE, 2001, 291 (5506) :1026-1031
[7]   Observations of boreal forest fire smoke in the stratosphere by POAM III, SAGE II, and lidar in 1998 [J].
Fromm, M ;
Alfred, J ;
Hoppel, K ;
Hornstein, J ;
Bevilacqua, R ;
Shettle, E ;
Servranckx, R ;
Li, ZQ ;
Stocks, B .
GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (09) :1407-1410
[8]   Observations of Antarctic polar stratospheric clouds by POAM II: 1994-1996 [J].
Fromm, MD ;
Lumpe, JD ;
Bevilacqua, RM ;
Shettle, EP ;
Hornstein, J ;
Massie, ST ;
Fricke, KH .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D19) :23659-23672
[9]   An analysis of Polar Ozone and Aerosol Measurement (POAM) II Arctic polar stratospheric cloud observations, 1993-1996 [J].
Fromm, MD ;
Bevilacqua, RM ;
Hornstein, J ;
Shettle, E ;
Hoppel, K ;
Lumpe, JD .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D20) :24341-24357
[10]   LABORATORY STUDIES OF THE NITRIC-ACID TRIHYDRATE - IMPLICATIONS FOR THE SOUTH POLAR STRATOSPHERE [J].
HANSON, D ;
MAUERSBERGER, K .
GEOPHYSICAL RESEARCH LETTERS, 1988, 15 (08) :855-858