Stochastic boundary conditions in the deterministic Nagel-Schreckenberg traffic model -: art. no. 016107

被引:38
作者
Cheybani, S [1 ]
Kertész, J
Schreckenberg, M
机构
[1] Merhard Mercator Univ, D-47048 Duisburg, Germany
[2] Tech Univ Budapest, Dept Theoret Phys, H-1111 Budapest, Hungary
[3] Aalto Univ, Lab Computat Engn, FIN-02150 Espoo, Finland
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 01期
关键词
D O I
10.1103/PhysRevE.63.016107
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider open systems where cars move according to the deterministic Nagel-Schreckenberg rules [K. Nagel and M. Schreckenberg, J. Phys. I 2, 2221 (1992)] and with maximum velocity v(max)>1. which is an extension of the asymmetric exclusion process (ASEP). It turns out that the behavior of the system is dominated by two features: (a) the competition between the left and the right boundary, (b) the development of so-called ''buffers" due to the hindrance that an injected car feels from the front car at the beginning of the system. As a consequence, there is a first-order phase transition between the free flow and the congested phase accompanied by the collapse of the buffers, and the phase diagram essentially differs from that for v(max)=1 (AASEP).
引用
收藏
页码:016107 / 016101
页数:20
相关论文
共 34 条
[1]   A simulation study of an asymmetric exclusion model with open and periodic boundaries for parallel dynamics [J].
Benyoussef, A ;
Chakib, H ;
Ex-Zahraouy, H .
EUROPEAN PHYSICAL JOURNAL B, 1999, 8 (02) :275-280
[2]   Correlation functions in the Nagel-Schreckenberg model [J].
Cheybani, S ;
Kertész, J ;
Schreckenberg, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (49) :9787-9799
[3]   Statistical physics of vehicular traffic and some related systems [J].
Chowdhury, D ;
Santen, L ;
Schadschneider, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (4-6) :199-329
[4]   Exact stationary state for an asymmetric exclusion process with fully parallel dynamics [J].
de Gier, J ;
Nienhuis, B .
PHYSICAL REVIEW E, 1999, 59 (05) :4899-4911
[5]   AN EXACT SOLUTION OF A ONE-DIMENSIONAL ASYMMETRIC EXCLUSION MODEL WITH OPEN BOUNDARIES [J].
DERRIDA, B ;
DOMANY, E ;
MUKAMEL, D .
JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (3-4) :667-687
[6]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[7]   EXACT CORRELATION-FUNCTIONS IN AN ASYMMETRIC EXCLUSION MODEL WITH OPEN BOUNDARIES [J].
DERRIDA, B ;
EVANS, MR .
JOURNAL DE PHYSIQUE I, 1993, 3 (02) :311-322
[8]   Jamming transition in a cellular automaton model for traffic flow [J].
Eisenblatter, B ;
Santen, L ;
Schadschneider, A ;
Schreckenberg, M .
PHYSICAL REVIEW E, 1998, 57 (02) :1309-1314
[9]   Exact solution of a cellular automaton for traffic [J].
Evans, MR ;
Rajewsky, N ;
Speer, ER .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (1-2) :45-96
[10]   Exact results for deterministic cellular automats traffic models [J].
Fuks, H .
PHYSICAL REVIEW E, 1999, 60 (01) :197-202