Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain

被引:2913
作者
Pao, W
Miller, VA
Politi, KA
Riely, GJ
Somwar, R
Zakowski, MF
Kris, MG
Varmus, H
机构
[1] Mem Sloan Kettering Canc Ctr, Program Canc Biol & Genet, New York, NY 10021 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Med, Thorac Oncol Serv, New York, NY 10021 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Pathol, New York, NY 10021 USA
关键词
D O I
10.1371/journal.pmed.0020073
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Lung adenocarcinomas from patients who respond to the tyrosine kinase inhibitors gefitinib (Iressa) or erlotinib (Tarceva) usually harbor somatic gain-of-function mutations in exons encoding the kinase domain of the epidermal growth factor receptor (EGFR). Despite initial responses, patients eventually progress by unknown mechanisms of "acquired" resistance. Methods and Findings We show that in two of five patients with acquired resistance to gefitinib or erlotinib, progressing tumors contain, in addition to a primary drug-sensitive mutation in EGFR, a secondary mutation in exon 20, which leads to substitution of methionine for threonine at position 790 (T790M) in the kinase domain. Tumor cells from a sixth patient with a drug-sensitive EGFR mutation whose tumor progressed on adjuvant gefitinib after complete resection also contained the T790M mutation. This mutation was not detected in untreated tumor samples. Moreover, no tumors with acquired resistance had KRAS mutations, which have been associated with primary resistance to these drugs. Biochemical analyses of transfected cells and growth inhibition studies with lung cancer cell lines demonstrate that the T790M mutation confers resistance to EGFR mutants usually sensitive to either gefitinib or erlotinib. Interestingly, a mutation analogous to T790M has been observed in other kinases with acquired resistance to another kinase inhibitor, imatinib (Gleevec). Conclusion In patients with tumors bearing gefitinib- or erlotinib-sensitive EGFR mutations, resistant subclones containing an additional EGFR mutation emerge in the presence of drug. This observation should help guide the search for more effective therapy against a specific subset of lung cancers.
引用
收藏
页码:225 / 235
页数:11
相关论文
共 28 条
[1]   High incidence of BCR-ABL kinase domain mutations and absence of mutations of the PDGFR and KIT activation loops in CML patients with secondary resistance to imatinib [J].
Al-Ali, HK ;
Heinrich, MC ;
Lange, T ;
Krahl, R ;
Mueller, M ;
Müller, C ;
Niederwieser, D ;
Druker, BJ ;
Deininger, MWN .
HEMATOLOGY JOURNAL, 2004, 5 (01) :55-60
[2]   Characterization of a conserved structural determinant controlling protein kinase sensitivity to selective inhibitors [J].
Blencke, S ;
Zech, B ;
Engkvist, O ;
Greff, Z ;
Örfi, L ;
Horváth, Z ;
Kéri, G ;
Ullrich, A ;
Daub, H .
CHEMISTRY & BIOLOGY, 2004, 11 (05) :691-701
[3]   Mutation of threonine 766 in the epidermal growth factor receptor reveals a hotspot for resistance formation against selective tyrosine kinase inhibitors [J].
Blencke, S ;
Ullrich, A ;
Daub, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (17) :15435-15440
[4]   A RAPID FLUOROMETRIC ASSAY TO MEASURE NEURONAL SURVIVAL IN-VITRO [J].
BOZYCZKOCOYNE, D ;
MCKENNA, BW ;
CONNORS, TJ ;
NEFF, NT .
JOURNAL OF NEUROSCIENCE METHODS, 1993, 50 (02) :205-216
[5]   A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors [J].
Chen, LL ;
Trent, JC ;
Wu, EF ;
Fuller, GN ;
Ramdas, L ;
Zhang, W ;
Raymond, AK ;
Prieto, VG ;
Oyedeji, CO ;
Hunt, KK ;
Pollock, RE ;
Feig, BW ;
Hayes, KJ ;
Choi, H ;
Macapinlac, HA ;
Hittelman, W ;
Velasco, MA ;
Patel, S ;
Burgess, MA ;
Benjamin, RS ;
Frazier, ML .
CANCER RESEARCH, 2004, 64 (17) :5913-5919
[6]   A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome [J].
Cools, J ;
DeAngelo, DJ ;
Gotlib, J ;
Stover, EH ;
Legare, RD ;
Cortes, J ;
Kutok, J ;
Clark, J ;
Galinsky, I ;
Griffin, JD ;
Cross, NCP ;
Tefferi, A ;
Malone, J ;
Alam, R ;
Schrier, SL ;
Schmid, J ;
Rose, M ;
Vandenberghe, P ;
Verhoef, G ;
Boogaerts, M ;
Wlodarska, I ;
Kantarjian, H ;
Marynen, P ;
Coutre, SE ;
Stone, R ;
Gilliland, DG .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 348 (13) :1201-1214
[7]   Strategies to overcome resistance to targeted protein kinase inhibitors [J].
Daub, H ;
Specht, K ;
Ullrich, A .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (12) :1001-1010
[8]  
DEININGER M, 2004, BLOOD
[9]   Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification [J].
Gorre, ME ;
Mohammed, M ;
Ellwood, K ;
Hsu, N ;
Paquette, R ;
Rao, PN ;
Sawyers, CL .
SCIENCE, 2001, 293 (5531) :876-880
[10]   Molecular mechanisms of resistance to STI571 in chronic myeloid leukemia [J].
Gorre, ME ;
Sawyers, CL .
CURRENT OPINION IN HEMATOLOGY, 2002, 9 (04) :303-307