Approaches to working in high-dimensional data spaces: gene expression microarrays

被引:56
作者
Wang, Y. [1 ]
Miller, D. J. [2 ]
Clarke, R. [3 ,4 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Elect Comp & Biomed Engn, Arlington, VA 22203 USA
[2] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
[3] Georgetown Univ, Lombardi Comprehens Canc Ctr, Dept Physiol & Biophys, Washington, DC 20057 USA
[4] Georgetown Univ, Lombardi Comprehens Canc Ctr, Dept Oncol, Washington, DC 20057 USA
关键词
microarray; gene expression profiling; high dimensionality; data modelling and analysis;
D O I
10.1038/sj.bjc.6604207
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
This review provides a focused summary of the implications of high- dimensional data spaces produced by gene expression microarrays for building better models of cancer diagnosis, prognosis, and therapeutics. We identify the unique challenges posed by high dimensionality to highlight methodological problems and discuss recent methods in predictive classification, unsupervised subclass discovery, and marker identification.
引用
收藏
页码:1023 / 1028
页数:6
相关论文
共 30 条
[1]  
Aliferis CF, 2006, CANCER INFORM, V2, P133
[2]   Microarray data analysis: from disarray to consolidation and consensus [J].
Allison, DB ;
Cui, XQ ;
Page, GP ;
Sabripour, M .
NATURE REVIEWS GENETICS, 2006, 7 (01) :55-65
[3]   The properties of high-dimensional data spaces: implications for exploring gene and protein expression data [J].
Clarke, Robert ;
Ressom, Habtom W. ;
Wang, Antai ;
Xuan, Jianhua ;
Liu, Minetta C. ;
Gehan, Edmund A. ;
Wang, Yue .
NATURE REVIEWS CANCER, 2008, 8 (01) :37-49
[4]  
Duda RO, 2006, PATTERN CLASSIFICATI
[5]   Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting [J].
Dupuy, Alain ;
Simon, Richard M. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2007, 99 (02) :147-157
[6]   ON TESTING THE SIGNIFICANCE OF SETS OF GENES [J].
Efron, Bradley ;
Tibshirani, Robert .
ANNALS OF APPLIED STATISTICS, 2007, 1 (01) :107-129
[7]   Outcome signature genes in breast cancer: is there a unique set? [J].
Ein-Dor, L ;
Kela, I ;
Getz, G ;
Givol, D ;
Domany, E .
BIOINFORMATICS, 2005, 21 (02) :171-178
[8]   Clustering by passing messages between data points [J].
Frey, Brendan J. ;
Dueck, Delbert .
SCIENCE, 2007, 315 (5814) :972-976
[9]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[10]   Unsupervised learning of parsimonious mixtures on large spaces with integrated feature and component selection [J].
Graham, MW ;
Miller, DJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (04) :1289-1303