A dynamic 4D probabilistic atlas of the developing brain

被引:223
作者
Kuklisova-Murgasova, Maria [1 ]
Aljabar, Paul [1 ]
Srinivasan, Latha [2 ]
Counsell, Serena J. [2 ]
Doria, Valentina [2 ]
Serag, Ahmed [1 ]
Gousias, Ioannis. S. [2 ]
Boardman, James P. [2 ]
Rutherford, Mary A. [2 ]
Edwards, A. David [2 ]
Hajnal, Joseph V. [2 ]
Rueckert, Daniel [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Hammersmith Hosp, MRC Clin Sci Ctr, Imaging Sci Dept, London W12 00N, England
基金
英国工程与自然科学研究理事会;
关键词
Probabilistic atlas; Neonatal; Spatio-temporal; 4D template; AUTOMATIC SEGMENTATION; SPATIAL NORMALIZATION; IMAGE SEGMENTATION; MRI SEGMENTATION; PRETERM; BORN; CONSTRUCTION; PREMATURE; MODEL; ADOLESCENTS;
D O I
10.1016/j.neuroimage.2010.10.019
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Probabilistic atlases are widely used in the neuroscience community as a tool for providing a standard space for comparison of subjects and as tissue priors used to enhance the intensity-based classification of brain MRI. Most efforts so far have focused on static brain atlases either for adult or pediatric cohorts. In contrast to the adult brain the rapid growth of the neonatal brain requires an age-specific spatial probabilistic atlas to provide suitable anatomical and structural information. In this paper we describe a 4D probabilistic atlas that allows dynamic generation of prior tissue probability maps for any chosen stage of neonatal brain development between 29 and 44 gestational weeks. The atlas is created from the segmentations of 142 neonatal subjects at different ages using a kernel-based regression method and provides prior tissue probability maps for six structures - cortex, white matter, subcortical grey matter, brainstem, cerebellum and cerebro-spinal fluid. The atlas is publicly available at www.brain-development.org. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2750 / 2763
页数:14
相关论文
共 64 条
[1]  
Alexa M, 2002, ACM T GRAPHIC, V21, P380, DOI 10.1145/566570.566592
[2]   Assessment of brain growth in early childhood using deformation-based morphometry [J].
Aljabar, P. ;
Bhatia, K. K. ;
Murgasov, M. ;
Hajnal, J. V. ;
Boardman, J. P. ;
Srinivasan, L. ;
Rutherford, M. A. ;
Dyet, L. E. ;
Edwards, A. D. ;
Rueckert, D. .
NEUROIMAGE, 2008, 39 (01) :348-358
[3]   Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term [J].
Allin, M ;
Matsumoto, H ;
Santhouse, AM ;
Nosarti, C ;
AlAsady, MHS ;
Stewart, AL ;
Rifkin, L ;
Murray, RM .
BRAIN, 2001, 124 :60-66
[4]   Infant brain probability templates for MRI segmentation and normalization [J].
Altaye, Mekibib ;
Holland, Scott K. ;
Wilke, Marko ;
Gaser, Christian .
NEUROIMAGE, 2008, 43 (04) :721-730
[5]  
ANBEEK P, 2006, PEDIATR RES, V63, P158
[6]  
[Anonymous], MRI NEONATAL BRAIN
[7]   Geometric means in a novel vector space structure on symmetric positive-definite matrices [J].
Arsigny, Vincent ;
Fillard, Pierre ;
Pennec, Xavier ;
Ayache, Nicholas .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (01) :328-347
[8]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[9]   Geodesic estimation for large deformation anatomical shape averaging and interpolation [J].
Avants, B ;
Gee, JC .
NEUROIMAGE, 2004, 23 :S139-S150
[10]   A COMPUTERIZED SYSTEM FOR THE ELASTIC MATCHING OF DEFORMED RADIOGRAPHIC IMAGES TO IDEALIZED ATLAS IMAGES [J].
BAJCSY, R ;
LIEBERSON, R ;
REIVICH, M .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1983, 7 (04) :618-625