Locus of frequency-dependent depression identified with multiple-probability fluctuation analysis at rat climbing fibre Purkinje cell synapses

被引:225
作者
Silver, RA [1 ]
Momiyama, A [1 ]
Cull-Candy, SG [1 ]
机构
[1] UCL, Dept Pharmacol, London WC1E 6BT, England
来源
JOURNAL OF PHYSIOLOGY-LONDON | 1998年 / 510卷 / 03期
基金
英国惠康基金;
关键词
D O I
10.1111/j.1469-7793.1998.881bj.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. EPSCs were recorded under whole-cell voltage clamp at room temperature from Purkinje cells in slices of cerebellum from 12- to 14-day-old rats. EPSCs from individual climbing fibre (CF) inputs were identified on the basis of their large size, paired-pulse depression and all-or-none appearance in response to a graded stimulus. 2. Synaptic transmission was investigated over a wide range of experimentally imposed release probabilities by analysing fluctuations in the peak of the EPSC. Release probability was manipulated log altering the extracellular [Ca(2+)] and [Mg(2+)]. Quantal parameters were estimated from plots of coefficient of variation (CV) or variance against mean conductance by fitting a multinomial model that incorporated both spatial variation in quantal size and non-uniform release probability. This 'multiple-probability fluctuation' (MPF) analysis gave an estimate of 510 +/- 50 for the number of functional release sites (N) and a quantal size (q) of 0.5 +/- 0.03 nS (n = 6). 3. Control experiments, and simulations examining the effects of non-uniform release probability, indicate that MPF analysis provides a reliable estimate of quantal parameters. Direct measurement of quantal amplitudes in the presence of 5 mM Sr(2+), which gave asynchronous release, yielded distributions with a mean quantal size of 0.55 +/- 0.01. nS and a CV of 0.37 +/- 0.01 (n = 4). Similar estimates of q were obtained in 2 mM Ca(2+) when release probability was lowered with the calcium channel blocker Cd(2+). The non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 1 mu M) reduced both the evoked current and the quantal size (estimated with MPF analysis) to a similar degree, but did not affect the estimate of N. 4. We used MPF analysis to identify those quantal parameters that change during frequency-dependent depression at climbing fibre-Purkinje cell synaptic connections. At low stimulation frequencies, the mean release probability ((P) over bar(r)) was unusually high (0.90 +/- 0.03 at 0.033 Hz, n = 5), but as the frequency of stimulation was increased, (P) over bar(r) fell dramatically (0.02 +/- 0.01, at 10 Hz, n = 4) with no apparent change in either q or N. This indicates that the observed 50-fold depression in EPSC amplitude is presynaptic in origin. 5. Presynaptic frequency-dependent depression was investigated with double-pulse and multiple-pulse protocols. EPSC recovery, following simultaneous release at practically all sites, was slow, being well. fitted by the sum of two exponential functions (time constants of 0.35 +/- 0.09 and 3.2 +/- 0.4 s, n = 5). EPSC recovery following sustained stimulation was even slower. We propose that presynaptic depression at CF synapses reflects a slow recovery of release probability following release of each quantum of transmitter. 6. The large number of functional release sites, relatively large quantal size, and unusual dynamics of transmitter release at the CF synapse appear specialized to ensure highly reliable olivocerebellar transmission at low frequencies but to limit transmission at higher frequencies.
引用
收藏
页码:881 / 902
页数:22
相关论文
共 65 条
[1]   Sr2+ and quantal events at excitatory synapses between mouse hippocampal neurons in culture [J].
AbdulGhani, MA ;
Valiante, TA ;
Pennefather, PS .
JOURNAL OF PHYSIOLOGY-LONDON, 1996, 495 (01) :113-125
[3]  
[Anonymous], 1969, NEUROBIOLOGY CEREBEL
[4]   ACTIVITY PATTERNS OF CEREBELLAR CORTICAL-NEURONS AND CLIMBING FIBER AFFERENTS IN THE AWAKE CAT [J].
ARMSTRONG, DM ;
RAWSON, JA .
JOURNAL OF PHYSIOLOGY-LONDON, 1979, 289 (APR) :425-448
[5]  
Barbour B, 1997, TRENDS NEUROSCI, V20, P377
[6]   PRESYNAPTIC AND POSTSYNAPTIC GLUTAMATE RECEPTORS AT A GIANT EXCITATORY SYNAPSE IN RAT AUDITORY BRAIN-STEM SLICES [J].
BARNESDAVIES, M ;
FORSYTHE, ID .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 488 (02) :387-406
[7]   PRESYNAPTIC MECHANISM FOR LONG-TERM POTENTIATION IN THE HIPPOCAMPUS [J].
BEKKERS, JM ;
STEVENS, CF .
NATURE, 1990, 346 (6286) :724-729
[8]   Calcium influx and transmitter release in a fast CNS synapse [J].
Borst, JGG ;
Sakmann, B .
NATURE, 1996, 383 (6599) :431-434
[9]   Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex [J].
Buhl, EH ;
Tamas, G ;
Szilagyi, T ;
Stricker, C ;
Paulsen, O ;
Somogyi, P .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 500 (03) :689-713
[10]   VARIANCE ANALYSIS OF EXCITATORY POSTSYNAPTIC POTENTIALS IN CAT SPINAL MOTONEURONS DURING POSTTETANIC POTENTIATION [J].
CLAMANN, HP ;
MATHIS, J ;
LUSCHER, HR .
JOURNAL OF NEUROPHYSIOLOGY, 1989, 61 (02) :403-416