Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots

被引:526
作者
Yamamoto, Y [1 ]
Kobayashi, Y [1 ]
Matsumoto, H [1 ]
机构
[1] Okayama Univ, Bioresources Res Inst, Kurashiki, Okayama 7100046, Japan
关键词
D O I
10.1104/pp.125.1.199
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Pea (Pisum sativum) roots were treated with aluminum in a calcium solution, and lipid peroxidation was investigated histochemically and biochemically, as well as other events caused by aluminum exposure. Histochemical stainings were observed to distribute similarly on the entire surface of the root apex for three events (aluminum accumulation, lipid peroxidation, and callose production), but the loss of plasma membrane integrity (detected by Evans blue uptake) was localized exclusively at the periphery of the cracks on the surface of root apex. The enhancement of four events (aluminum accumulation, lipid peroxidation, callose production, and root elongation inhibition) displayed similar aluminum dose dependencies and occurred by 4 h. The loss of membrane integrity, however, was enhanced at lower aluminum concentrations and after longer aluminum exposure (8 h). The addition of butylated hydroxyanisole (a lipophilic antioxidant) during aluminum treatment completely prevented lipid peroxidation and callose production by 40%, but did not prevent or slow the other events. Thus lipid peroxidation is a relatively early symptom induced by the accumulation of aluminum and appears to cause, in part, callose production, but not the root elongation inhibition; by comparison, the loss of plasma membrane integrity is a relatively late symptom caused by cracks in the root due to the inhibition of root elongation.
引用
收藏
页码:199 / 208
页数:10
相关论文
共 45 条
[1]   ADSORPTION OF AL-3+ TO PHOSPHATIDYLCHOLINE VESICLES [J].
AKESON, MA ;
MUNNS, DN ;
BURAU, RG .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 986 (01) :33-40
[2]  
BAKER CJ, 1994, PLANT CELL TISS ORG, V39, P7, DOI 10.1007/BF00037585
[3]   EFFECT OF ALUMINUM ON LIPID-PEROXIDATION, SUPEROXIDE-DISMUTASE, CATALASE, AND PEROXIDASE-ACTIVITIES IN ROOT-TIPS OF SOYBEAN (GLYCINE-MAX) [J].
CAKMAK, I ;
HORST, WJ .
PHYSIOLOGIA PLANTARUM, 1991, 83 (03) :463-468
[4]   NEUROTOXIC CATIONS INDUCE MEMBRANE RIGIDIFICATION AND MEMBRANE-FUSION AT MICROMOLAR CONCENTRATIONS [J].
DELEERS, M ;
SERVAIS, JP ;
WULFERT, E .
BIOCHIMICA ET BIOPHYSICA ACTA, 1986, 855 (02) :271-276
[5]   ALUMINUM TOXICITY AND TOLERANCE IN PLANTS [J].
DELHAIZE, E ;
RYAN, PR .
PLANT PHYSIOLOGY, 1995, 107 (02) :315-321
[6]   CELLULOSE BIOSYNTHESIS [J].
DELMER, DP ;
AMOR, Y .
PLANT CELL, 1995, 7 (07) :987-1000
[7]   Expression of a moderately anionic peroxidase is induced by aluminum treatment in tobacco cells: Possible involvement of peroxidase isozymes in aluminum ion stress [J].
Ezaki, B ;
Tsugita, S ;
Matsumoto, H .
PHYSIOLOGIA PLANTARUM, 1996, 96 (01) :21-28
[8]   CLONING AND SEQUENCING OF THE CDNAS INDUCED BY ALUMINUM TREATMENT AND P-I STARVATION IN CULTURED TOBACCO CELLS [J].
EZAKI, B ;
YAMAMOTO, Y ;
MATSUMOTO, H .
PHYSIOLOGIA PLANTARUM, 1995, 93 (01) :11-18
[9]   USE OF NON-PERMEATING PIGMENTS FOR TESTING SURVIVAL OF CELLS [J].
GAFF, DF ;
OKONGOOG.O .
JOURNAL OF EXPERIMENTAL BOTANY, 1971, 22 (72) :756-&
[10]  
Golub M.S., 1997, RES ISSUES ALUMINUM, P69