The second loop of occludin is required for suppression of Raf1-induced tumor growth

被引:54
作者
Wang, ZL
Mandell, KJ
Parkos, CA
Mrsny, RJ
Nusrat, A
机构
[1] Emory Univ, Sch Med, Dept Pathol & Lab Med, Epithelial Pathobiol Res Unit, Atlanta, GA 30322 USA
[2] Unity Pharmaceut, Los Altos Hills, CA 94022 USA
关键词
tight junction; occludin; raf;
D O I
10.1038/sj.onc.1208634
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tight junctions (TJs) regulate epithelial cell polarity and paracellular permeability. Loss of functional TJs is commonly associated with epithelial cell-derived cancers. Raf1-mediated transformation of rat salivary gland epithelial cells (Pa4-Raf1) induces transcriptional down-regulation of the TJ protein occludin and forced reexpression of occludin rescues polarized phenotype of epithelial cells. In the present study, we used this model to examine how specific structural modi. cations in the occludin protein affect its function in vitro and influence tumor growth in vivo. Our results revealed that neither the C-terminal nor the N-terminal half of occludin alone were sufficient to rescue cells from transformation by Raf1. However, forced expression of an occludin mutant lacking the first extracellular loop was sufficient to rescue cells from Raf1-mediated transformation. Interestingly, forced expression of an occludin mutant lacking the second extracellular loop did not rescue the epithelial phenotype in vitro nor did it prevent tumor growth in vivo. These results demonstrate that the TJ protein occludin has a potent inhibitory effect on the Raf1-mediated tumorigenesis, and the second extracellular loop of occludin appears to be critical for this function.
引用
收藏
页码:4412 / 4420
页数:9
相关论文
共 35 条
[1]   Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues [J].
AndoAkatsuka, Y ;
Saitou, M ;
Hirase, T ;
Kishi, M ;
Sakakibara, A ;
Itoh, M ;
Yonemura, S ;
Furuse, M ;
Tsukita, S .
JOURNAL OF CELL BIOLOGY, 1996, 133 (01) :43-47
[2]   Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein [J].
Balda, MS ;
Whitney, JA ;
Flores, C ;
Gonzalez, S ;
Cereijido, M ;
Matter, K .
JOURNAL OF CELL BIOLOGY, 1996, 134 (04) :1031-1049
[3]  
Bamforth SD, 1999, J CELL SCI, V112, P1879
[4]   COOH terminus of occludin is required for tight junction barrier function in early Xenopus embryos [J].
Chen, YH ;
Merzdorf, C ;
Paul, DL ;
Goodenough, DA .
JOURNAL OF CELL BIOLOGY, 1997, 138 (04) :891-899
[5]  
COBB MH, 1994, SEMIN CANCER BIOL, V5, P261
[6]   p21(ras) in carcinogenesis [J].
deVries, JE ;
tenKate, J ;
Bosman, FT .
PATHOLOGY RESEARCH AND PRACTICE, 1996, 192 (07) :658-668
[7]   A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts [J].
Furuse, M ;
Sasaki, H ;
Fujimoto, K ;
Tsukita, S .
JOURNAL OF CELL BIOLOGY, 1998, 143 (02) :391-401
[8]   OCCLUDIN - A NOVEL INTEGRAL MEMBRANE-PROTEIN LOCALIZING AT TIGHT JUNCTIONS [J].
FURUSE, M ;
HIRASE, T ;
ITOH, M ;
NAGAFUCHI, A ;
YONEMURA, S ;
TSUKITA, S ;
TSUKITA, S .
JOURNAL OF CELL BIOLOGY, 1993, 123 (06) :1777-1788
[9]   DIRECT ASSOCIATION OF OCCLUDIN WITH ZO-1 AND ITS POSSIBLE INVOLVEMENT IN THE LOCALIZATION OF OCCLUDIN AT TIGHT JUNCTIONS [J].
FURUSE, M ;
ITOH, M ;
HIRASE, T ;
NAGAFUCHI, A ;
YONEMURA, S ;
TSUKITA, S ;
TSUKITA, S .
JOURNAL OF CELL BIOLOGY, 1994, 127 (06) :1617-1626
[10]   Tight junction proteins [J].
González-Mariscal, L ;
Betanzos, A ;
Nava, P ;
Jaramillo, BE .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2003, 81 (01) :1-44