Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides

被引:600
作者
Rayner, Katey J. [1 ]
Esau, Christine C. [2 ]
Hussain, Farah N. [1 ]
McDaniel, Allison L. [3 ]
Marshall, Stephanie M. [3 ]
van Gils, Janine M. [1 ]
Ray, Tathagat D. [1 ]
Sheedy, Frederick J. [1 ]
Goedeke, Leigh [1 ]
Liu, Xueqing [2 ]
Khatsenko, Oleg G. [2 ]
Kaimal, Vivek [2 ]
Lees, Cynthia J. [4 ]
Fernandez-Hernando, Carlos [1 ]
Fisher, Edward A. [1 ]
Temel, Ryan E. [3 ]
Moore, Kathryn J. [1 ]
机构
[1] NYU, Sch Med, Marc & Ruti Bell Vasc Biol & Dis Program, Leon H Charney Div Cardiol,Dept Med, New York, NY 10016 USA
[2] Regulus Therapeut, San Diego, CA 92121 USA
[3] Wake Forest Univ, Bowman Gray Sch Med, Dept Pathol, Sect Lipid Sci, Winston Salem, NC 27157 USA
[4] Wake Forest Univ, Bowman Gray Sch Med, Dept Pathol, Comparat Med Sect, Winston Salem, NC 27157 USA
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
CHOLESTEROL; MICRORNA-33; INTRON;
D O I
10.1038/nature10486
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cardiovascular disease remains the leading cause of mortality in westernized countries, despite optimum medical therapy to reduce the levels of low-density lipoprotein (LDL)-associated cholesterol. The pursuit of novel therapies to target the residual risk has focused on raising the levels of high-density lipoprotein (HDL)-associated cholesterol in order to exploit its atheroprotective effects(1). MicroRNAs (miRNAs) have emerged as important posttranscriptional regulators of lipid metabolism and are thus a new class of target for therapeutic intervention(2). MicroRNA-33a and microRNA-33b (miR-33a/b) are intronic miRNAs whose encoding regions are embedded in the sterol-response-element-binding protein genes SREBF2 and SREBF1 (refs 3-5), respectively. These miRNAs repress expression of the cholesterol transporter ABCA1, which is a key regulator of HDL biogenesis. Recent studies in mice suggest that antagonizing miR-33a may be an effective strategy for raising plasma HDL levels(3-5) and providing protection against atherosclerosis(6); however, extrapolating these findings to humans is complicated by the fact that mice lack miR-33b, which is present only in the SREBF1 gene of medium and large mammals. Here we show in African green monkeys that systemic delivery of an anti-miRNA oligonucleotide that targets both miR-33a and miR-33b increased hepatic expression of ABCA1 and induced a sustained increase in plasma HDL levels over 12 weeks. Notably, miR-33 antagonism in this non-human primate model also increased the expression of miR-33 target genes involved in fatty acid oxidation (CROT, CPT1A, HADHB and PRKAA1) and reduced the expression of genes involved in fatty acid synthesis (SREBF1, FASN, ACLY and ACACA), resulting in a marked suppression of the plasma levels of very-low-density lipoprotein (VLDL)-associated triglycerides, a finding that has not previously been observed in mice. These data establish, in a model that is highly relevant to humans, that pharmacological inhibition of miR-33a and miR33b is a promising therapeutic strategy to raise plasma HDL and lower VLDL triglyceride levels for the treatment of dyslipidaemias that increase cardiovascular disease risk.
引用
收藏
页码:404 / +
页数:6
相关论文
共 20 条
[1]   Harmonizing the Metabolic Syndrome A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity [J].
Alberti, K. G. M. M. ;
Eckel, Robert H. ;
Grundy, Scott M. ;
Zimmet, Paul Z. ;
Cleeman, James I. ;
Donato, Karen A. ;
Fruchart, Jean-Charles ;
James, W. Philip T. ;
Loria, Catherine M. ;
Smith, Sidney C., Jr. .
CIRCULATION, 2009, 120 (16) :1640-1645
[2]   Progress in HDL-Based Therapies for Atherosclerosis [J].
Chyu, Kuang-Yuh ;
Peter, Anish ;
Shah, Prediman K. .
CURRENT ATHEROSCLEROSIS REPORTS, 2011, 13 (05) :405-412
[3]   miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling [J].
Davalos, Alberto ;
Goedeke, Leigh ;
Smibert, Peter ;
Ramirez, Cristina M. ;
Warrier, Nikhil P. ;
Andreo, Ursula ;
Cirera-Salinas, Daniel ;
Rayner, Katey ;
Suresh, Uthra ;
Pastor-Pareja, Jose Carlos ;
Esplugues, Enric ;
Fisher, Edward A. ;
Penalva, Luiz O. F. ;
Moore, Kathryn J. ;
Suarez, Yajaira ;
Lai, Eric C. ;
Fernandez-Hernando, Carlos .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (22) :9232-9237
[4]   Novel HDL-directed pharmacotherapeutic strategies [J].
Degoma, Emil M. ;
Rader, Daniel J. .
NATURE REVIEWS CARDIOLOGY, 2011, 8 (05) :266-277
[5]   ATP-binding cassette transporter A1 contains an NH2-terminal signal anchor sequence that translocates the protein's first hydrophilic domain to the exoplasmic space [J].
Fitzgerald, ML ;
Mendez, AJ ;
Moore, KJ ;
Andersson, LP ;
Panjeton, HA ;
Freeman, MW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (18) :15137-15145
[6]  
Garber DW, 2000, J LIPID RES, V41, P1020
[7]  
Geary RS, 2009, EXPERT OPIN DRUG MET, V5, P381, DOI [10.1517/17425250902877680 , 10.1517/17425250902877680]
[8]   Expression of miR-33 from an SREBP2 Intron Inhibits Cholesterol Export and Fatty Acid Oxidation [J].
Gerin, Isabelle ;
Clerbaux, Laure-Alix ;
Haumont, Olivier ;
Lanthier, Nicolas ;
Das, Arun K. ;
Burant, Charles F. ;
Leclercq, Isabelle A. ;
MacDougald, Ormond A. ;
Bommer, Guido T. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (44) :33652-33661
[9]   MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo [J].
Horie, Takahiro ;
Ono, Koh ;
Horiguchi, Masahito ;
Nishi, Hitoo ;
Nakamura, Tomoyuki ;
Nagao, Kazuya ;
Kinoshita, Minako ;
Kuwabara, Yasuhide ;
Marusawa, Hiroyuki ;
Iwanaga, Yoshitaka ;
Hasegawa, Koji ;
Yokode, Masayuki ;
Kimura, Takeshi ;
Kita, Toru .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (40) :17321-17326
[10]   SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver [J].
Horton, JD ;
Goldstein, JL ;
Brown, MS .
JOURNAL OF CLINICAL INVESTIGATION, 2002, 109 (09) :1125-1131