Interdomain and membrane interactions of CTP:phosphocholine cytidylyltransferase revealed via limited proteolysis and mass spectrometry

被引:24
作者
Bogan, MJ
Agnes, GR
Pio, F
Cornell, RB [1 ]
机构
[1] Simon Fraser Univ, Dept Mol Biol & Biochem, Burnaby, BC V5A 1S6, Canada
[2] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada
关键词
D O I
10.1074/jbc.M414028200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CTP:phosphocholine cytidylyltransferase (CCT) is a multi-domain enzyme that regulates phosphatidylcholine synthesis. It converts to an active form upon binding cell membranes, and interdomain dissociations have been hypothesized to accompany this process. To identify these interdomain and membrane interactions, the tertiary structures of three forms of CCT alpha were probed by monitoring accessibility to proteases. Time-limited digestion with chymotrypsin or arginine C of soluble CCT alpha (CCTsol), phospholipid vesicle-bound CCT (CCTmem), and a soluble constitutively active CCT truncated at amino acid 236 generated complex mixtures of peptides that were resolved and identified by gel electrophoresis/immunoblotting and by matrix-assisted laser desorption/ionization-mass spectrometry, with or without coupling to capillary liquid chromatography. Identification of cleavage sites enabled assembly of peptide bond accessibility maps for each CCT form. Our results reveal a similar to 80-residue core within the catalytic domain (domain C) as the most inaccessible region in all three forms and the C- terminal phosphorylation domain as the most accessible. Membrane binding has little effect on the protease accessibility of these domains. To map the protease sites onto the catalytic domain, its three-dimensional structure was modeled from the atomic coordinates of glycerolphosphate cytidylyltransferase (Protein Data Bank code 1COZ). The protease inaccessibility of most sites in domain C could be explained by burial or location within secondary structural elements. The accessibility of the N-terminal domain (domain N) was enhanced upon membrane binding. Residues Phe(234)-Leu(303) were inaccessible in CCTmem, suggesting burial in the membrane. Surprisingly, residues Leu(274)-Leu(303) of this domain were also inaccessible in CCTsol. We propose that this region is buried by interdomain contacts with domain N in CCTsol. Membrane binding and burial of domain M in the lipid bilayer may disrupt this interaction, leading to increased exposure of sites in domain N.
引用
收藏
页码:19613 / 19624
页数:12
相关论文
共 39 条
[1]   Lipid regulation of CTP:phosphocholine cytidylytransferase: Electrostatic, hydrophobic, and synergistic interactions of anionic phospholipids and diacylglycerol [J].
Arnold, RS ;
Cornell, RB .
BIOCHEMISTRY, 1996, 35 (30) :9917-9924
[2]   Binding of CTP:phosphocholine cytidylyltransferase to lipid vesicles: Diacylglycerol and enzyme dephosphorylation increase the affinity for negatively charged membranes [J].
Arnold, RS ;
DePaoliRoach, AA ;
Cornell, RB .
BIOCHEMISTRY, 1997, 36 (20) :6149-6156
[3]   LiveBench-1: Continuous benchmarking of protein structure prediction servers [J].
Bujnicki, JM ;
Elofsson, A ;
Fischer, D ;
Rychlewski, L .
PROTEIN SCIENCE, 2001, 10 (02) :352-361
[4]   A graph-theory algorithm for rapid protein side-chain prediction [J].
Canutescu, AA ;
Shelenkov, AA ;
Dunbrack, RL .
PROTEIN SCIENCE, 2003, 12 (09) :2001-2014
[5]   FUNCTIONS OF THE C-TERMINAL DOMAIN OF CTP-PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE - EFFECTS OF C-TERMINAL DELETIONS ON ENZYME-ACTIVITY, INTRACELLULAR-LOCALIZATION AND PHOSPHORYLATION POTENTIAL [J].
CORNELL, RB ;
KALMAR, GB ;
KAY, RJ ;
JOHNSON, MA ;
SANGHERA, JS ;
PELECH, SL .
BIOCHEMICAL JOURNAL, 1995, 310 :699-708
[6]   How cytidylyltransferase uses an amphipathic helix to sense membrane phospholipid composition [J].
Cornell, RB .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1998, 26 (03) :539-544
[7]   Regulation of CTP:phosphocholine cytidylyltransferase by amphitropism and relocalization [J].
Cornell, RB ;
Northwood, IC .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (09) :441-447
[8]  
CRAIG L, 1994, J BIOL CHEM, V269, P3311
[9]   Regulation of CTP: Phosphocholine cytidylyltransferase activity by the physical properties of lipid membranes: An important role for stored curvature strain energy [J].
Davies, SMA ;
Epand, RM ;
Kraayenhof, R ;
Cornell, RB .
BIOCHEMISTRY, 2001, 40 (35) :10522-10531
[10]   Structure of the membrane binding domain of CTP:phosphocholine cytidylyltransferase [J].
Dunne, SJ ;
Cornell, RB ;
Johnson, JE ;
Glover, NR ;
Tracey, AS .
BIOCHEMISTRY, 1996, 35 (37) :11975-11984