Features of time-independent Wigner functions

被引:210
作者
Curtright, T
Fairlie, D
Zachos, C
机构
[1] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA
[2] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[3] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA
关键词
D O I
10.1103/PhysRevD.58.025002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Wigner phase-space distribution function provides the basis for Moyal's deformation quantization alternative to the more conventional Hilbert space and path integral quantizations. The general features of time-independent Wigner functions are explored here, including the functional (''star'') eigenvalue equations they satisfy; their projective orthogonality spectral properties; their Darboux ("supersymmetric") isospectral potential recursions; and their canonical transformations. These features are illustrated explicitly through simple solvable potentials: the harmonic oscillator, the linear potential, the Poschl-Teller potential, and the Liouville potential. [S0556-2821(98)00714-0].
引用
收藏
页数:14
相关论文
共 51 条
[1]  
ABRAMOWITZ M, 1965, NBS APPL MATH SER, V55
[2]   FORMULATION OF QUANTUM MECHANICS BASED ON THE QUASI-PROBABILITY DISTRIBUTION INDUCED ON PHASE SPACE [J].
BAKER, GA .
PHYSICAL REVIEW, 1958, 109 (06) :2198-2206
[3]   QUANTUM OSCILLATIONS IN SEMICLASSICAL FERMION MU-SPACE DENSITY [J].
BALAZS, NL ;
ZIPFEL, GG .
ANNALS OF PHYSICS, 1973, 77 (1-2) :139-156
[4]   WIGNER FUNCTION AND OTHER DISTRIBUTION-FUNCTIONS IN MOCK PHASE SPACES [J].
BALAZS, NL ;
JENNINGS, BK .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 104 (06) :347-391
[5]  
BARTLETT MS, 1949, P CAMB PHILOS SOC, V45, P545
[6]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[7]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[8]  
Bender C. M., 1978, ADVMATH METHODS SCI
[9]   NONPERTURBATIVE WEAK-COUPLING ANALYSIS OF THE QUANTUM LIOUVILLE FIELD-THEORY [J].
BRAATEN, E ;
CURTRIGHT, T ;
GHANDOUR, G ;
THORN, C .
ANNALS OF PHYSICS, 1984, 153 (01) :147-201
[10]   QUANTIZATION PROBLEM AND VARIATIONAL PRINCIPLE IN PHASE-SPACE FORMULATION OF QUANTUM-MECHANICS [J].
COHEN, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (10) :1863-1866