Identification of translational displacements between N-dimensional data sets using the high-order SVD and phase correlation

被引:28
作者
Hoge, WS [1 ]
Westin, CF
机构
[1] Brigham & Womens Hosp, Dept Radiol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Boston, MA 02115 USA
关键词
D O I
10.1109/TIP.2005.849327
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an extension of the phase correlation image alignment method to N-dimensional data sets. By the Fourier shift theorem, the motion model for translational shifts between N-dimensional images can be represented as a rank-one tensor. Through use of a high-order singular value decomposition, the phase correlation between two N-dimensional data sets can be decomposed to independently identify translational displacements along each dimension with subpixel resolution. Using three-dimensional MRI data sets, we demonstrate the effectiveness of this approach relative to other N-dimensional image registration methods.
引用
收藏
页码:884 / 889
页数:6
相关论文
共 15 条
[1]  
AVERBUCH A, 1999, PSEUDOPOLAR FFT ITS
[2]   A SURVEY OF IMAGE REGISTRATION TECHNIQUES [J].
BROWN, LG .
COMPUTING SURVEYS, 1992, 24 (04) :325-376
[3]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[4]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342
[5]   Extension of phase correlation to subpixel registration [J].
Foroosh, H ;
Zerubia, JB ;
Berthod, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2002, 11 (03) :188-200
[6]  
Hoge WS, 2003, 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS, P707
[7]   A subspace identification extension to the phase correlation method [J].
Hoge, WS .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003, 22 (02) :277-280
[8]   Pseudopolar-based estimation of large translations, rotations, and scalings in images [J].
Keller, Y ;
Averbuch, A ;
Israeli, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (01) :12-22
[9]   Orthogonal tensor decompositions [J].
Kolda, TG .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) :243-255
[10]  
Kuglin C. D., 1975, Proceedings of the 1975 International Conference on Cybernetics and Society, P163