Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation

被引:306
作者
Montanari, S
Rountani, M
Heux, L
Vignon, MR
机构
[1] CNRS, Ctr Rech Macromol Vegetales, CERMAV, F-38041 Grenoble 9, France
[2] Univ Grenoble 1, F-38041 Grenoble 9, France
关键词
D O I
10.1021/ma048396c
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Surface carboxylated cellulose nanocrystals with different sizes and degrees of oxidation were prepared by TEMPO-mediated oxidation of cotton linters and microfibrils of parenchyma cell cellulose (PCC). The size of the oxidized crystals depended on (i) the starting material, (ii) an eventual acid prehydrolysis, and (iii) the oxidation conditions. The oxidized cellulose nanocrystals were characterized by transmission electron microscopy, conductometric titration, and solid-state NMR spectroscopy. During TEMPO oxidation, the main reaction corresponded to a selective oxidation of surface primary hydroxyl groups into carboxylic groups. At the same time, a decrease of the crystal size occurred, resulting from some degradation in the amorphous areas of the starting material. The introduction of negative charges at the interface of the crystalline domains induced a better individualization of the crystallites. The degrees of oxidation (DO) determined by conductometric titration were in agreement with those deduced from solid-state NMR data. The DO values reached 0.4 and 0.24 for PCC microfibrils and cotton linters, respectively. In the case of HCl-hydrolyzed samples, these values reached 0.23 for PCC microfibrils and 0.15 for cotton linters. When dispersed in water, these carboxylated cellulose crystallites led to birefringent suspensions that did not flocculate nor sediment, due to their polyelectrolyte character created by the presence of surface negative charges.
引用
收藏
页码:1665 / 1671
页数:7
相关论文
共 37 条
[1]  
[Anonymous], 1974, PHYS BIOL PLANT CELL
[2]   Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose [J].
Araki, J ;
Wada, M ;
Kuga, S ;
Okano, T .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1998, 142 (01) :75-82
[3]   Influence of surface charge on viscosity behavior of cellulose microcrystal suspension [J].
Araki, J ;
Wada, M ;
Kuga, S ;
Okana, T .
JOURNAL OF WOOD SCIENCE, 1999, 45 (03) :258-261
[4]  
Araki J, 2000, LANGMUIR, V16, P2413, DOI 10.1021/1a9911180
[5]   Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting [J].
Araki, J ;
Wada, M ;
Kuga, S .
LANGMUIR, 2001, 17 (01) :21-27
[6]   The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses [J].
Atalla, RH ;
VanderHart, DL .
SOLID STATE NUCLEAR MAGNETIC RESONANCE, 1999, 15 (01) :1-19
[7]   LEVEL-OFF DEGREE OF POLYMERIZATION - RELATION TO POLYPHASE STRUCTURE OF CELLULOSE FIBERS [J].
BATTISTA, OA ;
COPPICK, S ;
HOWSMON, JA ;
MOREHEAD, FF ;
SISSON, WA .
INDUSTRIAL AND ENGINEERING CHEMISTRY, 1956, 48 (02) :333-335
[8]   TEMPO-mediated oxidation of polysaccharides: survey of methods and applications [J].
Bragd, PL ;
van Bekkum, H ;
Besemer, AC .
TOPICS IN CATALYSIS, 2004, 27 (1-4) :49-66
[9]   The biosynthesis of cellulose [J].
Brown, RM .
JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, 1996, A33 (10) :1345-1373
[10]   SELECTIVE OXIDATION OF MONOSACCHARIDE DERIVATIVES TO URONIC-ACIDS [J].
DAVIS, NJ ;
FLITSCH, SL .
TETRAHEDRON LETTERS, 1993, 34 (07) :1181-1184