Global stability and chaos in a population model with piecewise constant arguments

被引:58
作者
Liu, PZ [1 ]
Gopalsamy, K [1 ]
机构
[1] Flinders Univ S Australia, Dept Math & Stat, Adelaide, SA 5042, Australia
关键词
D O I
10.1016/S0096-3003(98)00037-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sufficient conditions are obtained for the global stability of the positive equilibrium of dx/dt = rx(t){1 - ax(t) - b Sigma(j=0)(infinity) c(j)x([t -j])} It is shown that for certain special cases, solutions of the equation can have chaotic behaviour through period doubling bifurcations. (C) 1999 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:63 / 88
页数:26
相关论文
共 23 条
[1]  
[Anonymous], 1995, HOKKAIDO MATH J
[2]  
Cooke K.L., 1991, THEOREM G SEIFERT EQ
[3]  
ELAYDI S, 1992, P 1 WORLD C NONL AN
[4]   STABILITY RESULTS FOR DELAYED-RECRUITMENT MODELS IN POPULATION-DYNAMICS [J].
FISHER, ME ;
GOH, BS .
JOURNAL OF MATHEMATICAL BIOLOGY, 1984, 19 (01) :147-156
[5]  
GOPALSAMY K, IN PRESS J MATH ANAL
[6]  
Gopalsamy K., 2013, Stability and Oscillations in Delay Differential Equations of Population Dynamics, V74
[7]   DYNAMICS OF DENSITY DEPENDENT POPULATION MODELS [J].
GUCKENHEIMER, J ;
OSTER, G ;
IPAKTCHI, A .
JOURNAL OF MATHEMATICAL BIOLOGY, 1977, 4 (02) :101-147
[8]  
Gulick D, 1992, ENCOUNTERS CHAOS
[9]  
Gy??ri I., 1991, OSCILLATION THEORY D
[10]  
Hale J, 1991, DYNAMICS BIFURCATION