共 56 条
Learning and cognitive flexibility: frontostriatal function and monoaminergic modulation
被引:305
作者:
Kehagia, Angie A.
[1
,2
]
Murray, Graham K.
[1
,3
]
Robbins, Trevor W.
[1
,2
]
机构:
[1] Univ Cambridge, Behav & Clin Neurosci Inst, Cambridge CB2 3EB, England
[2] Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England
[3] Univ Cambridge, Addenbrookes Hosp, Dept Psychiat, Brain Mapping Unit, Cambridge CB2 2QQ, England
基金:
英国惠康基金;
英国医学研究理事会;
关键词:
MEDIAL PREFRONTAL CORTEX;
SPATIAL WORKING-MEMORY;
GOAL-DIRECTED BEHAVIOR;
BASAL GANGLIA;
LOCUS-COERULEUS;
SELECTIVE OVEREXPRESSION;
ORBITOFRONTAL CORTEX;
PARKINSONS-DISEASE;
NUCLEUS-ACCUMBENS;
DOPAMINE NEURONS;
D O I:
10.1016/j.conb.2010.01.007
中图分类号:
Q189 [神经科学];
学科分类号:
071006 ;
摘要:
Learning in a constant environment, and adapting flexibly to a changing one, through changes in reinforcement contingencies or valence-free cues, depends on overlapping circuitry that interconnects the prefrontal cortex (PFC) with the striatum and is subject to several forms of neurochemical modulation. We present evidence from recent studies in animals employing electrophysiological, pharmacological and lesion techniques, and neuroimaging, neuropsychological and pharmacological investigations of healthy humans and clinical patients. Dopamine (DA) neurotransmission in the medial striatum and PFC is critical for basic reinforcement learning and the integration of negative feedback during reversal learning, whilst orbitofrontal 5-hydroxytryptamine (5-HT) likely mediates this type of low level flexibility, perhaps by reducing interference from salient stimuli. The role of prefrontal noradrenaline (NA) in higher order flexibility indexed through attentional set-shifting has recently received significant empirical support, and similar avenues appear promising in the field of task switching.
引用
收藏
页码:199 / 204
页数:6
相关论文