High order explicit methods for parabolic equations

被引:87
作者
Medovikov, AA [1 ]
机构
[1] Inst Numer Math, Moscow 117333, Russia
来源
BIT | 1998年 / 38卷 / 02期
关键词
explicit Runge-Kutta methods; stiff ordinary differential equations; parabolic equations; approximation by polynomials;
D O I
10.1007/BF02512373
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper discusses explicit embedded integration methods with large stability domains of order 3 and 4. The high order produces accurate results, the large stability domains allow some reasonable stiffness, the explicitness enables the method to treat very large problems, often space discretization of parabolic PDEs, and the embedded formulas permit an efficient stepsize control. The construction of these methods is achieved in two steps: firstly me compute stability polynomials of a given order with optimal stability domains, i.e., possessing a Chebyshev alternation; secondly we realize a corresponding explicit Runge-Kutta method with the help of the theory of composition methods.
引用
收藏
页码:372 / 390
页数:19
相关论文
共 26 条
[1]  
BERNSTEIN SN, 1926, PROFESSEES SORBONNE
[2]  
CHEBYSHEV PL, 1947, COLLECTED WORKS, V2
[3]  
CHEBYSHEV PL, 1948, COMPLETE WORKS, V3, P108
[4]  
CHEBYSHEV PL, 1881, 11 TOM ZAP IMP AK NA
[5]  
CHEBYSHEV PL, 1859, MEM ACAD ST PETERSBU
[6]  
Hairer E., 2008, Solving Ordinary Differential Equations I Nonstiff problems
[7]  
Lebedev V.I., 1994, NUMER METHODS APPL, P45
[8]  
LEBEDEV VI, 1993, RUSS J NUMER ANAL M, V8, P397
[9]  
LEBEDEV VI, 1987, N177 DNM AS USSR
[10]  
LEBEDEV VI, 1993, RUSS J NUMER ANAL M, V8, P195