Nonlinear dynamical analysis and demonstration on Chinese business cycle

被引:4
作者
Yan, Huiyun [1 ]
Shi, Yimin [1 ]
机构
[1] NW Polytech Univ, Dept Appl Math, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Business cycle; Parameter estimation; Bifurcation; Chaos; MODEL;
D O I
10.1016/j.amc.2011.06.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of a generalized Chinese business cycle by nonlinear dynamical method. Firstly, we establish a Chinese economic cycle model based on Goodwin model, and then discuss the point estimation and confidence interval of the model's parameter values based on the historical data. At last, we study the bifurcation and chaotic behavior of the model. The results show that the marginal consumption has great influence on the development of Chinese economic. The Chinese economic development will run into the stable periodic wave when the marginal consumer is greater than 0.5. Furthermore, the greater the marginal consumption is, the more stable the economic development is. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1547 / 1552
页数:6
相关论文
共 14 条
[1]  
[Anonymous], 2004, Nonlinear Dynamics
[2]  
DU T, 2007, WORLD ECON, V4, P3
[3]   THE NONLINEAR ACCELERATOR AND THE PERSISTENCE OF BUSINESS CYCLES [J].
Goodwin, R. M. .
ECONOMETRICA, 1951, 19 (01) :1-17
[4]   AN ESSAY IN DYNAMIC THEORY [J].
Harrod, R. F. .
ECONOMIC JOURNAL, 1939, 49 (193) :14-33
[5]  
Hicks J.R., 1950, A Contribution to the Theory of the Trade Cycle
[6]  
HUI YY, 2008, STAT INFORM FORUM, V23, P71
[7]  
ICHIMURA S, 1954, POST KEYNESIAN EC, P192
[8]   A MODEL OF THE TRADE CYCLE [J].
Kaldor, N. .
ECONOMIC JOURNAL, 1940, 50 (197) :78-92
[9]   A MACRODYNAMIC THEORY OF BUSINESS CYCLES [J].
Kalecki, M. .
ECONOMETRICA, 1935, 3 (03) :327-344
[10]   Stochastic stability and bifurcation in a macroeconomic model [J].
Li, Wei ;
Xu, Wei ;
Zhao, Junfeng ;
Jin, Yanfei .
CHAOS SOLITONS & FRACTALS, 2007, 31 (03) :702-711