Locally regularized spatiotemporal modeling and model comparison for functional MRI

被引:92
作者
Purdon, PL [1 ]
Solo, V
Weisskoff, RM
Brown, EN
机构
[1] Massachusetts Gen Hosp NMR Ctr, Charlestown, MA USA
[2] Univ New S Wales, Sch Elect Engn, Sydney, NSW, Australia
[3] Massachusetts Gen Hosp, Neurosci Stat Res Lab, Dept Anesthesia & Crit Care, Boston, MA 02114 USA
[4] Harvard Univ, MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA
关键词
functional MRI; regularization; spatiotemporal modeling; system identification; model comparison;
D O I
10.1006/nimg.2001.0870
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In this work we treat fMRI data analysis as a spatiotemporal system identification problem and address issues of model formulation, estimation, and model comparison. We present a new model that includes a physiologically based hemodynamic response and an empirically derived low-frequency noise model. We introduce an estimation method employing spatial regularization that improves the precision of spatially varying noise estimates. We call the algorithm locally regularized spatiotemporal (LRST) modeling. We develop, anew model selection criterion and compare our model to the SPM-GLM method. Our findings suggest that our method offers a better approach to identifying appropriate statistical models for fMRI studies. (C) 2001 Academic Press.
引用
收藏
页码:912 / 923
页数:12
相关论文
共 45 条
[1]   TIME COURSE EPI OF HUMAN BRAIN-FUNCTION DURING TASK ACTIVATION [J].
BANDETTINI, PA ;
WONG, EC ;
HINKS, RS ;
TIKOFSKY, RS ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1992, 25 (02) :390-397
[2]  
BOX GEP, 1994, TIME SERIES ANAL
[3]   Linear systems analysis of functional magnetic resonance imaging in human V1 [J].
Boynton, GM ;
Engel, SA ;
Glover, GH ;
Heeger, DJ .
JOURNAL OF NEUROSCIENCE, 1996, 16 (13) :4207-4221
[4]   Statistical methods of estimation and inference for functional MR image analysis [J].
Bullmore, E ;
Brammer, M ;
Williams, SCR ;
Rabehesketh, S ;
Janot, N ;
David, A ;
Mellers, J ;
Howard, R ;
Sham, P .
MAGNETIC RESONANCE IN MEDICINE, 1996, 35 (02) :261-277
[5]  
Bullmore ET, 2001, HUM BRAIN MAPP, V12, P61, DOI 10.1002/1097-0193(200102)12:2<61::AID-HBM1004>3.0.CO
[6]  
2-W
[7]  
Burnham K. P., 1998, MODEL SELECTION INFE
[8]  
Burock MA, 2000, HUM BRAIN MAPP, V11, P249, DOI 10.1002/1097-0193(200012)11:4<249::AID-HBM20>3.0.CO
[9]  
2-5
[10]  
COHEN MS, 1997, NEUROIMAGE, V6, P96