Temporal coding of brain patterns for direct limb control in humans

被引:97
作者
Mueller-Putz, Gernot R. [1 ]
Scherer, Reinhold [1 ,2 ]
Pfurtscheller, Gert [1 ]
Neuper, Christa [1 ]
机构
[1] Graz Univ Technol, Inst Knowledge Discovery, Lab Brain Comp Interfaces, Krenngasse 37, A-8010 Graz, Austria
[2] Univ Washington, Comp Sci & Engn, Seattle, WA 98195 USA
来源
FRONTIERS IN NEUROSCIENCE | 2010年 / 4卷
关键词
brain-computer interface; electroencephalogram; motor imagery; neuroprosthesis; spinal cord injury;
D O I
10.3389/fnins.2010.00034
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
For individuals with a high spinal cord injury (SCI) not only the lower limbs, but also the upper extremities are paralyzed. A neuroprosthesis can be used to restore the lost hand and arm function in those tetraplegics. The main problem for this group of individuals, however, is the reduced ability to voluntarily operate device controllers. A brain-computer interface provides a non-manual alternative to conventional input devices by translating brain activity patterns into control commands. We show that the temporal coding of individual mental imagery pattern can be used to control two independent degrees of freedom - grasp and elbow function - of an artificial robotic arm by utilizing a minimum number of EEG scalp electrodes. We describe the procedure from the initial screening to the final application. From eight naive subjects participating online feedback experiments, four were able to voluntarily control an artificial arm by inducing one motor imagery pattern derived from one EEG derivation only.
引用
收藏
页数:11
相关论文
共 34 条
[1]   A spelling device for the paralysed [J].
Birbaumer, N ;
Ghanayim, N ;
Hinterberger, T ;
Iversen, I ;
Kotchoubey, B ;
Kübler, A ;
Perelmouter, J ;
Taub, E ;
Flor, H .
NATURE, 1999, 398 (6725) :297-298
[2]  
Danoczy M, 2008, P 4 INT BRAIN COMP I, P355
[3]  
Davision A., 1997, Bootstrap Methods and their Application
[4]   EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis [J].
Delorme, A ;
Makeig, S .
JOURNAL OF NEUROSCIENCE METHODS, 2004, 134 (01) :9-21
[5]   Partially overlapping neural networks for real and imagined hand movements [J].
Gerardin, E ;
Sirigu, A ;
Lehéricy, S ;
Poline, JB ;
Gaymard, B ;
Marsault, C ;
Agid, Y ;
Le Bihan, D .
CEREBRAL CORTEX, 2000, 10 (11) :1093-1104
[6]   Control of a hand grasp neuroprosthesis using an electroencephalogram-triggered switch: demonstration of improvements in performance using wavepacket analysis [J].
Heasman, JM ;
Scott, TRD ;
Kirkup, L ;
Flynn, RY ;
Vare, VA ;
Gschwind, CR .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2002, 40 (05) :588-593
[7]   ONLINE TRANSFORMATION OF EEG SCALP POTENTIALS INTO ORTHOGONAL SOURCE DERIVATIONS [J].
HJORTH, B .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1975, 39 (05) :526-530
[8]   Neuronal ensemble control of prosthetic devices by a human with tetraplegia [J].
Hochberg, Leigh R. ;
Serruya, Mijail D. ;
Friehs, Gerhard M. ;
Mukand, Jon A. ;
Saleh, Maryam ;
Caplan, Abraham H. ;
Branner, Almut ;
Chen, David ;
Penn, Richard D. ;
Donoghue, John P. .
NATURE, 2006, 442 (7099) :164-171
[9]   Development of a neuroprosthesis for restoring arm and hand function via functional electrical stimulation following high cervical spinal cord injury [J].
Kirsch, Robert F. .
2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, :4142-4144
[10]   Critical decision-speed and information transfer in the "Graz Brain-Computer Interface" [J].
Krausz, G ;
Scherer, R ;
Korisek, G ;
Pfurtscheller, G .
APPLIED PSYCHOPHYSIOLOGY AND BIOFEEDBACK, 2003, 28 (03) :233-240