Bound to improve: a variational approach to convective heat transport

被引:7
作者
Ierley, GR [1 ]
Worthing, RA
机构
[1] Univ Calif San Diego, Cecil H & Ida Green Inst Geophys & Planetary Phys, La Jolla, CA 92093 USA
[2] Breasco LLC, Ann Arbor, MI USA
关键词
D O I
10.1017/S0022112001004839
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
To the long established idea of bounding turbulent convective heat transport by a variational method based on energetic constraints, we now add a richer class of 'z-constraints' with the hope of tightening bounds considerably. We establish that only certain moments of the governing equations are effective for this purpose. We explore the initial consequences of groups of such constraints by use of perturbation theory, which clarifies the need that a given set of elements be mutually congruent.
引用
收藏
页码:223 / 253
页数:31
相关论文
共 34 条
[1]  
[Anonymous], 1977, GEOPHYS ASTROPHYS FL
[2]   The Optimum Theory of Turbulence [J].
Busse, F.H. .
Advances in Applied Mechanics, 1979, 18 (0C) :77-121
[3]   ON HOWARDS UPPER BOUND FOR HEAT TRANSPORT BY TURBULENT CONVECTION [J].
BUSSE, FH .
JOURNAL OF FLUID MECHANICS, 1969, 37 :457-&
[4]   BOUNDS FOR HEAT TRANSPORT IN A POROUS LAYER [J].
BUSSE, FH ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1972, 54 (AUG8) :521-&
[5]  
CHAN SK, 1971, STUD APPL MATH, V50, P13
[6]  
Chandrasekhar S., 1981, HYDRODYNAMIC HYDROMA
[7]   Variational bounds on energy dissipation in incompressible flows .3. Convection [J].
Doering, CR ;
Constantin, P .
PHYSICAL REVIEW E, 1996, 53 (06) :5957-5981
[8]   BOUNDS FOR HEAT TRANSPORT IN A POROUS LAYER [J].
GUPTA, VP ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1973, 57 (FEB20) :491-514
[9]   COMPARISON OF STEADY-STATE AND STRONGLY CHAOTIC THERMAL-CONVECTION AT HIGH RAYLEIGH NUMBER [J].
HANSEN, U ;
YUEN, DA ;
MALEVSKY, AV .
PHYSICAL REVIEW A, 1992, 46 (08) :4742-4754
[10]  
HERRING JR, 1963, J ATMOS SCI, V20, P325, DOI 10.1175/1520-0469(1963)020<0325:IOPITC>2.0.CO