General interpolation in MPC and its advantages

被引:49
作者
Bacic, M [1 ]
Cannon, M
Lee, YI
Kouvaritakis, B
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[2] Seoul Natl Univ Technol, Dept Control & Instrumentat, Seoul 139743, South Korea
基金
英国工程与自然科学研究理事会;
关键词
constrained; interpolation; linear matrix inequality (LMI); predictive control;
D O I
10.1109/TAC.2003.812817
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Linear terminal control laws in model predictive control imply the need to compromise between performance and size of terminal region. A remedy allows the control law to vary with time, but requires very large online computation. Here, use is made of nonlinear terminal laws comprising an interpolation between predefined laws, each with its own precomputed terminal set. This reduces the online computation significantly, yet results in large terminal sets defined by the convex hull of invariant ellipsoids. The use of a different prediction class also produces significant benefits with respect to performance.
引用
收藏
页码:1092 / 1096
页数:5
相关论文
共 11 条
[1]  
[Anonymous], 1988, FUNDAMENTAL PROCESS
[2]  
Bloemen HHJ, 2001, P AMER CONTR CONF, P3061, DOI 10.1109/ACC.2001.946386
[3]  
Boyd S., 1994, LINEAR MATRIX INEQUA, DOI https://doi.org/10.1109/jproc.1998.735454
[4]   A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability [J].
Chen, H ;
Allgower, F .
AUTOMATICA, 1998, 34 (10) :1205-1217
[5]   Robust constrained model predictive control using linear matrix inequalities [J].
Kothare, MV ;
Balakrishnan, V ;
Morari, M .
AUTOMATICA, 1996, 32 (10) :1361-1379
[6]   Efficient robust predictive control [J].
Kouvaritakis, B ;
Rossiter, JA ;
Schuurmans, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (08) :1545-1549
[7]   Linear quadratic feasible predictive control [J].
Kouvaritakis, B ;
Rossiter, JA ;
Cannon, M .
AUTOMATICA, 1998, 34 (12) :1583-1592
[8]   MODIFIED QUADRATIC COST PROBLEM AND FEEDBACK STABILIZATION OF A LINEAR-SYSTEM [J].
KWON, WH ;
PEARSON, AE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (05) :838-842
[9]  
LEE YI, 2001, UNPUB AUTOMATICA
[10]   Constrained model predictive control: Stability and optimality [J].
Mayne, DQ ;
Rawlings, JB ;
Rao, CV ;
Scokaert, POM .
AUTOMATICA, 2000, 36 (06) :789-814