Deconstructing endogenous pain modulation

被引:103
作者
Mason, P
机构
[1] Univ Chicago, Dept Neurobiol Pharmacol & Physiol, Chicago, IL 60637 USA
[2] Univ Chicago, Comm Neurobiol, Chicago, IL 60637 USA
关键词
D O I
10.1152/jn.00249.2005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A pathway from the midbrain periaqueductal gray (PAG) through the ventromedial medulla (VMM) to the dorsal horn constitutes a putative endogenous nociceptive modulatory system. Yet activation of neurons in both PAG and VMM changes the responses of dorsal horn cells to nonnoxious stimuli and elicits motor and autonomic reactions that are not directly related to nociception. Activation of mu-opioid receptors in VMM and PAG also modifies processes in addition to nociceptive transmission. The descending projections of VMM neurons are not specific to nociception as VMM projects to the spinal superficial dorsal horn where thermoreceptors as well as nociceptors terminate. In addition, experiments with pseudorabies virus demonstrate multi-synaptic pathways from VMM to sympathetic and parasympathetic target organs. VMM neurons respond to both noxious and unexpected innocuous stimuli of multiple modalities, and change their discharge during behaviors unrelated to pain such as micturition/continence and sleep/wake. In conclusion, all available evidence argues against the idea that PAG and VMM target nociception alone. Instead these brain stem sites may effect homeostatic adjustments made necessary by salient situations including but not limited to injury.
引用
收藏
页码:1659 / 1663
页数:5
相关论文
共 63 条
[1]  
ADAIR JR, 1977, BRAIN RES, V128, P141
[2]  
[Anonymous], TXB PHYSL
[3]   RESPONSE OF SEROTONIN-CONTAINING NEURONS IN NUCLEUS RAPHE MAGNUS TO MORPHINE, NOXIOUS STIMULI, AND PERIAQUEDUCTAL GRAY STIMULATION IN FREELY MOVING CATS [J].
AUERBACH, S ;
FORNAL, C ;
JACOBS, BL .
EXPERIMENTAL NEUROLOGY, 1985, 88 (03) :609-628
[4]   Roles for pain modulatory cells during micturition and continence [J].
Baez, MA ;
Brink, TS ;
Mason, P .
JOURNAL OF NEUROSCIENCE, 2005, 25 (02) :384-394
[5]   Central circuits mediating patterned autonomic activity during active vs. passive emotional coping [J].
Bandler, R ;
Keay, KA ;
Floyd, N ;
Price, J .
BRAIN RESEARCH BULLETIN, 2000, 53 (01) :95-104
[6]   PUTATIVE PAIN MODULATING NEURONS IN THE ROSTRAL VENTRAL MEDULLA - REFLEX-RELATED ACTIVITY PREDICTS EFFECTS OF MORPHINE [J].
BARBARO, NM ;
HEINRICHER, MM ;
FIELDS, HL .
BRAIN RESEARCH, 1986, 366 (1-2) :203-210
[7]   ENDOGENOUS PAIN CONTROL-SYSTEMS - BRAIN-STEM SPINAL PATHWAYS AND ENDORPHIN CIRCUITRY [J].
BASBAUM, AI ;
FIELDS, HL .
ANNUAL REVIEW OF NEUROSCIENCE, 1984, 7 :309-338
[8]   3 BULBOSPINAL PATHWAYS FROM ROSTRAL MEDULLA OF CAT - AUTORADIOGRAPHIC STUDY OF PAIN MODULATING SYSTEMS [J].
BASBAUM, AI ;
CLANTON, CH ;
FIELDS, HL .
JOURNAL OF COMPARATIVE NEUROLOGY, 1978, 178 (02) :209-224
[9]   HYPERALGESIA DURING NALOXONE-PRECIPITATED WITHDRAWAL FROM MORPHINE IS ASSOCIATED WITH INCREASED ON-CELL ACTIVITY IN THE ROSTRAL VENTROMEDIAL MEDULLA [J].
BEDERSON, JB ;
FIELDS, HL ;
BARBARO, NM .
SOMATOSENSORY AND MOTOR RESEARCH, 1990, 7 (02) :185-203
[10]   DIFFERENTIAL EFFECTS OF 5-HYDROXYTRYPTAMINE, NORADRENALINE AND RAPHE STIMULATION ON NOCICEPTIVE AND NON-NOCICEPTIVE DORSAL HORN INTERNEURONES IN CAT [J].
BELCHER, G ;
RYALL, RW ;
SCHAFFNER, R .
BRAIN RESEARCH, 1978, 151 (02) :307-321