Models for machine learning and data mining in functional programming

被引:10
作者
Allison, L [1 ]
机构
[1] Monash Univ, Sch Comp Sci & Software Engn, Clayton, Vic 3800, Australia
关键词
D O I
10.1017/S0956796804005301
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The functional programming language Haskell and its type system are used to define and analyse the nature of some problems and tools in machine learning and data mining. Data types and type-classes for statistical models are developed that allow models to be manipulated in a precise, type-safe and flexible way. The statistical models considered include probability distributions, mixture models, function-models, time-series, and classification- and function-model-trees. The aim is to improve ways of designing and programming with models, not only of applying them.
引用
收藏
页码:15 / 32
页数:18
相关论文
共 25 条
  • [1] Akaike H, 1973, 2 INT S INFORM THEOR, P199, DOI 10.1007/978-1-4612-1694-0
  • [2] Compression and approximate matching
    Allison, L
    Powell, D
    Dix, TI
    [J]. COMPUTER JOURNAL, 1999, 42 (01) : 1 - 10
  • [3] ALLISON L, 2003, 2003148 TR SCH COMP
  • [4] [Anonymous], 1962, A Programming Language, DOI 10.1145/1460833.1460872
  • [5] Bayes T., 1763, Philosophical Transactions, V53, P370, DOI [10.1098/rstl.1763.0053, DOI 10.1098/RSTL.1763.0053]
  • [6] Comley JW, 2003, LECT NOTES COMPUT SC, V2690, P761
  • [7] The complexity of strict minimum message length inference
    Farr, GE
    Wallace, CS
    [J]. COMPUTER JOURNAL, 2002, 45 (03) : 285 - 292
  • [8] Unsupervised learning of finite mixture models
    Figueiredo, MAT
    Jain, AK
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (03) : 381 - 396
  • [9] George M. P., 1984, P 6 EUR C ART INT, P473
  • [10] HODGES A, 1983, A TURING ENIGMA