Screening analysis of human pharmaceutical compounds in US surface waters

被引:189
作者
Anderson, PD
D'Aco, VJ
Shanahan, P
Chapra, SC
Buzby, ME
Cunningham, VL
Duplessie, BM
Hayes, EP
Mastrocco, FJ
Parke, NJ
Rader, JC
Samuelian, JH
Schwab, BW
机构
[1] AMEC Earth & Environm, Westford, MA 01886 USA
[2] Quantum Management Grp Inc, Clifton, NJ 07011 USA
[3] Hydroanal Inc, Acton, MA 01720 USA
[4] Tufts Univ, Medford, MA 02155 USA
[5] Merck & Co Inc, Whitehouse Stn, NJ 08889 USA
[6] GlaxoSmithKline, King Of Prussia, PA 19406 USA
[7] Bristol Myers Squibb Co, New Brunswick, NJ 08903 USA
[8] Eli Lilly & Co, Lilly Corp Ctr, Indianapolis, IN 46285 USA
[9] AMEC Earth & Environm, Portland, ME 04101 USA
关键词
D O I
10.1021/es034430b
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The PhATE (Pharmaceutical Assessment and Transport Evaluation) model presented in this paper was developed as a tool to estimate concentrations of active pharmaceutical ingredients (APIs) in U.S. surface waters that result from patient use (or consumption) of medicines. PhATE uses a mass balance approach to model predicted environmental concentrations (PECS) in 11 watersheds selected to be representative of most hydrologic regions of the United States. The model divides rivers into discrete segments. It estimates the mass of API that enters a segment from upstream or from publicly owned treatment works (POTW) and is subsequently lost from the segment via in-stream loss mechanisms or flow diversions (i.e., man-made withdrawals). POTW discharge loads are estimated based on the population served, the API use per capita, the potential loss of the compound associated with human use (e.g., metabolism), and the portion of the API mass removed in the POTW. Simulations using three surrogate compounds show that PECS generated by PhATE are generally within an order of magnitude of measured concentrations and that the cumulative probability distribution of PECs for all watersheds included in PhATE is consistent with the nationwide distribution of measured concentrations of the surrogate compounds. Model simulations for 11 APIs yielded four categories of results. (1) PECs fit measured data for two compounds. (2) PECs are below analytical method detection limits and thus are consistent with measured data for three compounds. (3) PECS are higher than (i.e., not consistent with) measured data for three compounds. However, this may be the consequence of as yet unidentified depletion mechanisms. (4) PECS are several orders of magnitude below some measured data but consistent with most measured data for three compounds. For the fourth category, closer examination of sampling locations suggests that the field-measured concentrations for these compounds do not accurately reflect human use. Overall, these results demonstrate that PhATE may be used to predict screening-level concentrations of APIs and related compounds in the environment as well as to evaluate the suitability of existing fate information for an API.
引用
收藏
页码:838 / 849
页数:12
相关论文
共 45 条
[1]   THE RELEVANCE OF THE PRESENCE OF CERTAIN SYNTHETIC STEROIDS IN THE AQUATIC ENVIRONMENT [J].
AHERNE, GW ;
BRIGGS, R .
JOURNAL OF PHARMACY AND PHARMACOLOGY, 1989, 41 (10) :735-736
[2]   THE ROLE OF IMMUNOASSAY IN THE ANALYSIS OF MICROCONTAMINANTS IN WATER SAMPLES [J].
AHERNE, GW ;
ENGLISH, J ;
MARKS, V .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 1985, 9 (01) :79-83
[3]  
Barnes KK, 2002, 0294 USGS
[4]   Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands [J].
Belfroid, AC ;
Van der Horst, A ;
Vethaak, AD ;
Schäfer, AJ ;
Rijs, GBJ ;
Wegener, J ;
Cofino, WP .
SCIENCE OF THE TOTAL ENVIRONMENT, 1999, 225 (1-2) :101-108
[5]  
BROWN L, 2001, NGWA 2 INT C PHARM E
[6]  
Chapra S.C, 1997, SURFACE WATER QUALIT
[7]   AN IMPROVED MODEL FOR PREDICTING THE FATE OF CONSUMER PRODUCT CHEMICALS IN WASTE-WATER TREATMENT PLANTS [J].
COWAN, CE ;
LARSON, RJ ;
FEIJTEL, TCJ ;
RAPAPORT, RA .
WATER RESEARCH, 1993, 27 (04) :561-573
[8]   Comment on "Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance" [J].
Ericson, JF ;
Laenge, R ;
Sullivan, DE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (18) :4005-4006
[9]   Oestrogens and oestrogenic activity in raw and treated water in Severn Trent Water [J].
Fawell, JK ;
Sheahan, D ;
James, HA ;
Hurst, M ;
Scott, S .
WATER RESEARCH, 2001, 35 (05) :1240-1244
[10]   Occurrence, fate and effects of pharmaceutical substances in the environment - A review [J].
Halling-Sorensen, B ;
Nielsen, SN ;
Lanzky, PF ;
Ingerslev, F ;
Lutzhoft, HCH ;
Jorgensen, SE .
CHEMOSPHERE, 1998, 36 (02) :357-394