Comprehensive transcriptome analysis of auxin responses in Arabidopsis

被引:263
作者
Paponov, Ivan A. [1 ]
Paponov, Martina [1 ]
Teale, William [1 ]
Menges, Margit [2 ]
Chakrabortee, Sohini [2 ]
Murray, James A. H. [2 ]
Palme, Klaus [1 ]
机构
[1] Univ Freiburg, Fac Biol, D-79104 Freiburg, Germany
[2] Univ Cambridge, Inst Biotechnol, Cambridge CB2 1QT, England
关键词
D O I
10.1093/mp/ssm021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In plants, the hormone auxin shapes gene expression to regulate growth and development. Despite the detailed characterization of auxin-inducible genes, a comprehensive overview of the temporal and spatial dynamics of auxin-regulated gene expression is lacking. Here, we analyze transcriptome data from many publicly available Arabidopsis profiling experiments and assess tissue-specific gene expression both in response to auxin concentration and exposure time and in relation to other plant growth regulators. Our analysis shows that the primary response to auxin over a wide range of auxin application conditions and in specific tissues comprises almost exclusively the up-regulation of genes and identifies the most robust auxin marker genes. Tissue-specific auxin responses correlate with differential expression of Aux/IAA genes and the subsequent regulation of context- and sequence-specific patterns of gene expression. Changes in transcript levels were consistent with a distinct sequence of conjugation, increased transport capacity and down-regulation of biosynthesis in the temperance of high cellular auxin concentrations. Our data show that auxin regulates genes associated with the biosynthesis, catabolism and signaling pathways of other phytohormones. We present a transcriptional overview of the auxin response. Specific interactions between auxin and other phytohormones are highlighted, particularly the regulation of their metabolism. Our analysis provides a roadmap for auxin-dependent processes that underpins the concept of an 'auxin code'-a tissue-specific fingerprint of gene expression that initiates specific developmental processes.
引用
收藏
页码:321 / 337
页数:17
相关论文
共 72 条
[1]   Identification of inhibitors of auxin transcriptional activation by means of chemical genetics in Arabidopsis [J].
Armstrong, JI ;
Yuan, S ;
Dale, JM ;
Tanner, VN ;
Theologis, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (41) :14978-14983
[2]   Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis [J].
Bao, F ;
Shen, JJ ;
Brady, SR ;
Muday, GK ;
Asami, T ;
Yang, ZB .
PLANT PHYSIOLOGY, 2004, 134 (04) :1624-1631
[3]   Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades [J].
Brenner, WG ;
Romanov, GA ;
Köllmer, I ;
Bürkle, L ;
Schmülling, T .
PLANT JOURNAL, 2005, 44 (02) :314-333
[4]   BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis [J].
Caño-Delgado, A ;
Yin, YH ;
Yu, C ;
Vafeados, D ;
Mora-García, S ;
Cheng, JC ;
Nam, KH ;
Li, JM ;
Chory, J .
DEVELOPMENT, 2004, 131 (21) :5341-5351
[5]   The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis [J].
Choe, SW ;
Dilkes, BP ;
Fujioka, S ;
Takatsuto, S ;
Sakurai, A ;
Feldmann, KA .
PLANT CELL, 1998, 10 (02) :231-243
[6]   Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport [J].
Clay, NK ;
Nelson, T .
PLANT PHYSIOLOGY, 2005, 138 (02) :767-777
[7]  
Davies PJ., 2004, Plant Hormones: Biosynthesis, Signal Transduction, Action!, DOI DOI 10.1186/2046-9063-9-2
[8]   Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis [J].
Delarue, M ;
Prinsen, E ;
Van Onckelen, H ;
Caboche, M ;
Bellini, C .
PLANT JOURNAL, 1998, 14 (05) :603-611
[9]   The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness [J].
Dreher, KA ;
Brown, J ;
Saw, RE ;
Callis, J .
PLANT CELL, 2006, 18 (03) :699-714
[10]  
FRANCO AR, 1990, J BIOL CHEM, V265, P15845