Surface Precursors and Reaction Mechanisms for the Thermal Reduction of Graphene Basal Surfaces Oxidized by Atomic Oxygen

被引:92
作者
Sun, Tao
Fabris, Stefano [1 ]
Baroni, Stefano
机构
[1] SISSA, I-34136 Trieste, Italy
关键词
HETEROGENEOUS CO2 EVOLUTION; GRAPHITE SURFACE; CARBONACEOUS SURFACE; UNIFIED MECHANISM; PLASMA OXIDATION; ADSORPTION; OXIDE; MICROSCOPE; DESORPTION; STABILITY;
D O I
10.1021/jp111372k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The reduction of graphene oxide surfaces yielding molecular CO/CO2 is studied from first principles using density functional theory. We find that this reaction can proceed exothermically only from surface precursors containing more oxygen atoms than strictly needed to produce CO/CO2 in the gas phase. The calculations show that the lowest-energy configurations of multiple O adsorbates do not involve clustering of epoxy groups (the stable form of O adatoms on graphitic surfaces) but always contain lactone groups either in lactone-ether or in ether-lactone-ether form. We identify these lowest-energy structures as the main reaction precursors. The O adatoms near the lactone group catalyze its gasification to CO/CO2 by reducing the activation energy from above 1.8 eV (from an isolated lactone) to below 0.6 eV (from a lactone-ether). In addition, the residual O adatoms left behind after the lactone gasification minimize the energy of the graphitic products by saturating the dangling bonds of the resulting defective surface. By analyzing defect-free as well as defective surfaces, we identify a common set of concerted reaction mechanisms in which the formation of the gas products and the saturation of the newly formed C vacancies happen simultaneously. The calculated activation energies are in good agreement with the available experimental data.
引用
收藏
页码:4730 / 4737
页数:8
相关论文
共 43 条
[1]   Stability and Formation Mechanisms of Carbonyl- and Hydroxyl-Decorated Holes in Graphene Oxide [J].
Bagri, A. ;
Grantab, R. ;
Medhekar, N. V. ;
Shenoy, V. B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (28) :12053-12061
[2]   Initial Stages of Oxidation on Graphitic Surfaces: Photoemission Study and Density Functional Theory Calculations [J].
Barinov, Alexei ;
Malcioglu, O. Baris ;
Fabris, Stefano ;
Sun, Tao ;
Gregoratti, Luca ;
Dalmiglio, Matteo ;
Kiskinova, Maya .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (21) :9009-9013
[3]   Structural defects created on natural graphite surface by slight treatment of oxygen plasma - STM observations [J].
Bourelle, E ;
Konno, H ;
Inagaki, M .
CARBON, 1999, 37 (12) :2041-2048
[4]   Adsorption and Reactivity of CO2 on Defective Graphene Sheets [J].
Cabrera-Sanfelix, Pepa .
JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (02) :493-498
[5]   Two-Step Mechanism for Low-Temperature Oxidation of Vacancies in Graphene [J].
Carlsson, Johan M. ;
Hanke, Felix ;
Linic, Suljo ;
Scheffler, Matthias .
PHYSICAL REVIEW LETTERS, 2009, 102 (16)
[6]   Ab initio molecular orbital study of the unified mechanism and pathways for gas-carbon reactions [J].
Chen, N ;
Yang, RT .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (31) :6348-6356
[7]   A NEW SURFACE OXYGEN COMPLEX ON CARBON - TOWARD A UNIFIED MECHANISM FOR CARBON GASIFICATION REACTIONS [J].
CHEN, SG ;
YANG, RT ;
KAPTEIJN, F ;
MOULIJN, JA .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1993, 32 (11) :2835-2840
[8]   Ab initio modelling of basal plane oxidation of graphenes and implications for modelling char combustion [J].
Frankcombe, TJ ;
Bhatia, SK ;
Smith, SC .
CARBON, 2002, 40 (13) :2341-2349
[9]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
[10]   First-principles study of the atomic oxygen adsorption on the (0001) graphite surface and dissolution [J].
Incze, A ;
Pasturel, A ;
Chatillon, C .
APPLIED SURFACE SCIENCE, 2001, 177 (04) :226-229