Investigation of candidate division TM7, a recently recognized major lineage of the domain bacteria with no known pure-culture representatives

被引:268
作者
Hugenholtz, P [1 ]
Tyson, GW
Webb, RI
Wagner, AM
Blackall, LL
机构
[1] Univ Queensland, Dept Microbiol & Parasitol, Adv Wastewater Management Ctr, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Dept Microbiol & Parasitol, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia
[3] Univ Pretoria, Dept Microbiol & Plant Pathol, ZA-0001 Pretoria, South Africa
关键词
D O I
10.1128/AEM.67.1.411-419.2001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A molecular approach was used to investigate a recently described candidate division of the domain Bacteria, TM7, currently known only from environmental 16S ribosomal DNA sequence data, A number of TM7-specific primers and probes were designed and evaluated. Fluorescence in situ hybridization (FISH) of a laboratory scale bioreactor using two independent TM7-specific probes revealed a conspicuous sheathed-filament morphotype, fortuitously enriched in the reactor. Morphologically, the filament matched the description of the Eikelboom morphotype 0041-0675 widely associated with bulking problems in activated-sludge wastewater treatment systems. Transmission electron microscopy of the bioreactor sludge demonstrated that the sheathed-filament morphotype had a typical gram-positive cell envelope ultrastructure. Therefore, TM7 is only the third bacterial lineage recognized to have gram-positive representatives. TM7-specific FISH analysis of two full-scale wastewater treatment plant sludges, including the one used to seed the laboratory scale reactor, indicated the presence of a number of morphotypes, including sheathed filaments. TM7-specific PCR clone libraries prepared from the two full-scale sludges yielded 23 novel TM7 sequences. Three subdivisions could be defined based on these data and publicly available sequences. Environmental sequence data and TM7-specific FISH analysis indicate that members of the TM7 division are present in a variety of terrestrial, aquatic, and clinical habitats. A highly atypical base substitution (Escherichia coli position 912; C to U) for bacterial 16S rRNAs was present in almost all TM7 sequences, suggesting that TM7 bacteria, like Archaea, may be streptomycin resistant at the ribosome level.
引用
收藏
页码:411 / 419
页数:9
相关论文
共 28 条
  • [1] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [2] PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION
    AMANN, RI
    LUDWIG, W
    SCHLEIFER, KH
    [J]. MICROBIOLOGICAL REVIEWS, 1995, 59 (01) : 143 - 169
  • [3] AMILS R, 1993, N COMP BIOC, V26, P393
  • [4] Bond PL, 1999, APPL ENVIRON MICROB, V65, P4077
  • [5] BACTERIAL COMMUNITY STRUCTURES OF PHOSPHATE-REMOVING AND NON-PHOSPHATE-REMOVING ACTIVATED SLUDGES FROM SEQUENCING BATCH REACTORS
    BOND, PL
    HUGENHOLTZ, P
    KELLER, J
    BLACKALL, LL
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (05) : 1910 - 1916
  • [6] Molecular microbial diversity in soils from eastern Amazonia: Evidence for unusual microorganisms and microbial population shifts associated with deforestation
    Borneman, J
    Triplett, EW
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (07) : 2647 - 2653
  • [7] BRAND PAJ, 1987, WATER SA, V13, P1
  • [8] Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation
    Crocetti, GR
    Hugenholtz, P
    Bond, PL
    Schuler, A
    Keller, J
    Jenkins, D
    Blackall, LL
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (03) : 1175 - 1182
  • [9] DALEVI D, IN PRESS INT J SYST
  • [10] Dojka MA, 1998, APPL ENVIRON MICROB, V64, P3869