On the compression of low rank matrices

被引:218
作者
Cheng, H
Gimbutas, Z
Martinsson, PG
Rokhlin, V
机构
[1] MadMax Opt Inc, Hamden, CT 06518 USA
[2] Yale Univ, Dept Math, New Haven, CT 06511 USA
关键词
matrix factorization; low rank approximation; matrix inversion;
D O I
10.1137/030602678
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A procedure is reported for the compression of rank-deficient matrices. A matrix . of rank . is represented in the form . = . circle. circle., where . is a . x . submatrix of ., and . , . are well-conditioned matrices that each contain a . x . identity submatrix. This property enables such compression schemes to be used in certain situations where the singular value decomposition (SVD) cannot be used efficiently. Numerical examples are presented.
引用
收藏
页码:1389 / 1404
页数:16
相关论文
共 10 条
[1]   WAVELET-LIKE BASES FOR THE FAST SOLUTION OF 2ND-KIND INTEGRAL-EQUATIONS [J].
ALPERT, B ;
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (01) :159-184
[2]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[3]  
Beylkin G., 1998, DOC MATH, V3, P481
[4]   A fast, direct algorithm for the Lippmann-Schwinger integral equation in two dimensions [J].
Chen, Y .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2002, 16 (2-3) :175-190
[5]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[6]  
Greengard L., 1997, Acta Numerica, V6, P229, DOI 10.1017/S0962492900002725
[7]   Efficient algorithms for computing a strong rank-revealing QR factorization [J].
Gu, M ;
Eisenstat, SC .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (04) :848-869
[8]  
MARTINSSON PG, IN PRESS J COMPUT PH
[9]  
Stewart G. W., 1998, MATRIX ALGORITHMS, V1
[10]  
[No title captured]