Universality of transport properties in equilibrium, the goldstone theorem, and chiral anomaly

被引:151
作者
Alekseev, AY
Cheianov, VV
Frohlich, J
机构
[1] Uppsala Univ, Inst Theoret Phys, S-75108 Uppsala, Sweden
[2] ETH Honggerberg, Inst Theoret Phys, CH-8093 Zurich, Switzerland
关键词
D O I
10.1103/PhysRevLett.81.3503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study transport in a class of physical systems possessing two conserved chiral charges. We describe a relation between universality of transport properties of such systems and the chiral anomaly. We show that the nonvanishing of a current expectation value implies the presence of gapless modes, in analogy to the Goldstone theorem. Our main tool is a new formula expressing currents in terms of anomalous commutators. Universality of conductance arises as a natural consequence of the nonrenormalization of anomalies. To illustrate our formalism we examine transport properties of a quantum wire in 1 + 1 dimensions and of massless QED in a background magnetic field in 3 + 1 dimensions.
引用
收藏
页码:3503 / 3506
页数:4
相关论文
共 20 条
[1]   AXIAL-VECTOR VERTEX IN SPINOR ELECTRODYNAMICS [J].
ADLER, SL .
PHYSICAL REVIEW, 1969, 177 (5P2) :2426-&
[2]   Comparing conductance quantization in quantum wires and quantum Hall systems [J].
Alekseev, AY ;
Cheianov, VV ;
Frohlich, J .
PHYSICAL REVIEW B, 1996, 54 (24) :17320-17322
[3]  
[Anonymous], J EXPT THEORETICAL P
[4]  
Fetter A. L., 1971, QUANTUM THEORY MANY
[5]   COSMOLOGICAL BARYON AND LEPTON NUMBER IN THE PRESENCE OF ELECTROWEAK FERMION-NUMBER VIOLATION [J].
HARVEY, JA ;
TURNER, MS .
PHYSICAL REVIEW D, 1990, 42 (10) :3344-3349
[6]  
ITZYKSON C, 1980, INT SERIES PURE APPL, P519
[7]  
JACKIW R, 1985, CURRENT ALGEBRAS ANO, P78101
[9]   ELECTRICAL RESISTANCE OF DISORDERED ONE-DIMENSIONAL LATTICES [J].
LANDAUER, R .
PHILOSOPHICAL MAGAZINE, 1970, 21 (172) :863-&
[10]  
LAUGHLIN RB, 1981, PHYS REV B, V23, P5632, DOI 10.1103/PhysRevB.23.5632